A Transpose-SELDNet for Polyphonic Sound Event Localization and Detection

S. V, S. Koolagudi
{"title":"A Transpose-SELDNet for Polyphonic Sound Event Localization and Detection","authors":"S. V, S. Koolagudi","doi":"10.1109/I2CT57861.2023.10126251","DOIUrl":null,"url":null,"abstract":"Human beings have the ability to identify a particular event occurring in a surrounding based on sound cues even when no visual scenes are presented. Sound events are the auditory cues that are present in a surrounding. Sound event detection (SED) is the process of determining the beginning and end of sound events as well as a textual label for the event. The term sound source localization (SSL) refers to the process of identifying the spatial location of a sound occurrence in addition to the SED. The integrated task of SED and SSL is known as Sound Event Localization and Detection (SELD). In this proposed work, three different deep learning architectures are explored to perform SELD. The three deep learning architectures are SELDNet, D-SELDNet (Depthwise Convolution), and T-SELDNet (Transpose Convolution). Two sets of features are used to perform SED and Direction-of-Arrival (DOA) estimation tasks in this work. D-SELDNet uses a Depthwise convolution layer which helps reduce the model’s complexity in terms of computation time. T-SELDNet uses Transpose Convolution, which helps in learning better discriminative features by retaining the input size and not losing necessary information from the input. The proposed method is evaluated on the First-order Ambisonic (FOA) array format of the TAU-NIGENS Spatial Sound Events 2020 dataset. An improvement has been observed as compared to the existing SELD systems with the proposed T-SELDNet.","PeriodicalId":150346,"journal":{"name":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CT57861.2023.10126251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human beings have the ability to identify a particular event occurring in a surrounding based on sound cues even when no visual scenes are presented. Sound events are the auditory cues that are present in a surrounding. Sound event detection (SED) is the process of determining the beginning and end of sound events as well as a textual label for the event. The term sound source localization (SSL) refers to the process of identifying the spatial location of a sound occurrence in addition to the SED. The integrated task of SED and SSL is known as Sound Event Localization and Detection (SELD). In this proposed work, three different deep learning architectures are explored to perform SELD. The three deep learning architectures are SELDNet, D-SELDNet (Depthwise Convolution), and T-SELDNet (Transpose Convolution). Two sets of features are used to perform SED and Direction-of-Arrival (DOA) estimation tasks in this work. D-SELDNet uses a Depthwise convolution layer which helps reduce the model’s complexity in terms of computation time. T-SELDNet uses Transpose Convolution, which helps in learning better discriminative features by retaining the input size and not losing necessary information from the input. The proposed method is evaluated on the First-order Ambisonic (FOA) array format of the TAU-NIGENS Spatial Sound Events 2020 dataset. An improvement has been observed as compared to the existing SELD systems with the proposed T-SELDNet.
基于转置seldnet的复音事件定位与检测
即使没有视觉场景,人类也有能力根据声音线索识别周围发生的特定事件。声音事件是存在于周围环境中的听觉线索。声音事件检测(SED)是确定声音事件的开始和结束以及事件的文本标签的过程。声源定位(SSL)一词指的是在SED之外识别声音发生的空间位置的过程。SED和SSL的集成任务被称为声音事件定位和检测(SELD)。在本文中,我们探索了三种不同的深度学习架构来执行SELD。这三种深度学习架构分别是SELDNet、D-SELDNet(深度卷积)和T-SELDNet(转置卷积)。在这项工作中,两组特征用于执行SED和到达方向(DOA)估计任务。D-SELDNet使用深度卷积层,这有助于降低模型在计算时间方面的复杂性。T-SELDNet使用转置卷积,通过保留输入大小和不丢失输入的必要信息来帮助学习更好的判别特征。在TAU-NIGENS空间声事件2020数据集的一阶双声(FOA)阵列格式上对该方法进行了评估。与提出的T-SELDNet相比,已经观察到现有SELD系统的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信