Efficient algorithms for the Riemann-Roch problem and for addition in the Jacobian of a curve

Ming-Deh A. Huang, D. Ierardi
{"title":"Efficient algorithms for the Riemann-Roch problem and for addition in the Jacobian of a curve","authors":"Ming-Deh A. Huang, D. Ierardi","doi":"10.1109/SFCS.1991.185435","DOIUrl":null,"url":null,"abstract":"Several computational problems concerning the construction of rational functions and intersecting curves over a given curve are studied. The first problem is to construct a rational function with prescribed zeros and poles over a given curve. More precisely, let C be a smooth projective curve and assume as given an affine plane model F(x,y)=0 for C, a finite set of points P/sub i/=(X/sub i/, Y/sub i/) with F (X/sub i/, Y/sub i/)=0 and natural numbers n/sub i/, and a finite set of points Q/sub i/=(X/sub j/, Y/sub j/) with F(X/sub j/, Y/sub j/)=0 and natural numbers m/sub j/. The problem is to decide whether there is a rational function which has zeros at each point P/sub i/ of order n/sub i/, poles at each Q/sub j/ of order m/sub j/, and no zeros or poles anywhere else on C. One would also like to construct such a rational function if one exists. An efficient algorithm for solving this problem when the given plane curve has only ordinary multiple points is given.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

Abstract

Several computational problems concerning the construction of rational functions and intersecting curves over a given curve are studied. The first problem is to construct a rational function with prescribed zeros and poles over a given curve. More precisely, let C be a smooth projective curve and assume as given an affine plane model F(x,y)=0 for C, a finite set of points P/sub i/=(X/sub i/, Y/sub i/) with F (X/sub i/, Y/sub i/)=0 and natural numbers n/sub i/, and a finite set of points Q/sub i/=(X/sub j/, Y/sub j/) with F(X/sub j/, Y/sub j/)=0 and natural numbers m/sub j/. The problem is to decide whether there is a rational function which has zeros at each point P/sub i/ of order n/sub i/, poles at each Q/sub j/ of order m/sub j/, and no zeros or poles anywhere else on C. One would also like to construct such a rational function if one exists. An efficient algorithm for solving this problem when the given plane curve has only ordinary multiple points is given.<>
求解Riemann-Roch问题和曲线雅可比矩阵加法的有效算法
研究了在给定曲线上构造有理函数和相交曲线的几个计算问题。第一个问题是在给定曲线上构造一个具有规定零点和极点的有理函数。更准确地说,设C为光滑投影曲线,并假设给定一个仿射平面模型F(x,y)=0,对C有一个有限点集P/sub i/=(x /sub i/, y /sub i/), F(x /sub i/, y /sub i/)=0,自然数n/sub i/,和一个有限点集Q/sub i/=(x /sub j/, y /sub j/), F(x /sub j/, y /sub j/)=0,自然数m/sub j/。问题是确定是否存在一个有理函数,它在每个点P/ i/ (n/ i/)处为零,在每个点Q/ j/ (m/ j/)处为极,而在c上其他地方没有零或极,如果存在的话,我们也想构造这样一个有理函数。给出了当给定平面曲线只有普通多点时求解该问题的一种有效算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信