Cauchy's Work on Integral Geometry, Centers of Curvature, and Other Applications of Infinitesimals

J. Bair, Piotr Błaszczyk, P. Heinig, V. Kanovei, M. Katz, T. Mcgaffey
{"title":"Cauchy's Work on Integral Geometry, Centers of Curvature, and Other\n Applications of Infinitesimals","authors":"J. Bair, Piotr Błaszczyk, P. Heinig, V. Kanovei, M. Katz, T. Mcgaffey","doi":"10.14321/realanalexch.45.1.0127","DOIUrl":null,"url":null,"abstract":"Like his colleagues de Prony, Petit, and Poisson at the Ecole Polytechnique, Cauchy used infinitesimals in the Leibniz-Euler tradition both in his research and teaching. Cauchy applied infinitesimals in an 1826 work in differential geometry where infinitesimals are used neither as variable quantities nor as sequences but rather as numbers. He also applied infinitesimals in an 1832 article on integral geometry, similarly as numbers. We explore these and other applications of Cauchy's infinitesimals as used in his textbooks and research articles. \nAn attentive reading of Cauchy's work challenges received views on Cauchy's role in the history of analysis and geometry. We demonstrate the viability of Cauchy's infinitesimal techniques in fields as diverse as geometric probability, differential geometry, elasticity, Dirac delta functions, continuity and convergence. \nKeywords: Cauchy--Crofton formula; center of curvature; continuity; infinitesimals; integral geometry; limite; standard part; de Prony; Poisson","PeriodicalId":429168,"journal":{"name":"arXiv: History and Overview","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: History and Overview","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14321/realanalexch.45.1.0127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Like his colleagues de Prony, Petit, and Poisson at the Ecole Polytechnique, Cauchy used infinitesimals in the Leibniz-Euler tradition both in his research and teaching. Cauchy applied infinitesimals in an 1826 work in differential geometry where infinitesimals are used neither as variable quantities nor as sequences but rather as numbers. He also applied infinitesimals in an 1832 article on integral geometry, similarly as numbers. We explore these and other applications of Cauchy's infinitesimals as used in his textbooks and research articles. An attentive reading of Cauchy's work challenges received views on Cauchy's role in the history of analysis and geometry. We demonstrate the viability of Cauchy's infinitesimal techniques in fields as diverse as geometric probability, differential geometry, elasticity, Dirac delta functions, continuity and convergence. Keywords: Cauchy--Crofton formula; center of curvature; continuity; infinitesimals; integral geometry; limite; standard part; de Prony; Poisson
柯西在积分几何、曲率中心和无限小的其他应用方面的工作
像他在巴黎综合理工学院的同事德普罗尼、珀蒂和泊松一样,柯西在他的研究和教学中都使用了莱布尼茨-欧拉传统中的无穷小。柯西在1826年的微分几何作品中应用了无穷小,其中无穷小既不用作变量也不用作序列,而是用作数字。他在1832年的一篇关于积分几何的文章中也应用了无穷小,就像数字一样。我们探索这些和其他应用柯西的无限小在他的教科书和研究文章中使用。细心的阅读柯西的工作挑战了对柯西在分析和几何历史上的作用的看法。我们在几何概率、微分几何、弹性、狄拉克函数、连续性和收敛性等领域展示了柯西无穷小技术的可行性。关键词:柯西—克罗夫顿公式;曲率中心;连续性;无穷小;积分几何;接近于;标准部分;de普龙尼;泊松
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信