PiLoc: A self-calibrating participatory indoor localization system

Chengwen Luo, H. Hong, M. Chan
{"title":"PiLoc: A self-calibrating participatory indoor localization system","authors":"Chengwen Luo, H. Hong, M. Chan","doi":"10.1109/IPSN.2014.6846748","DOIUrl":null,"url":null,"abstract":"While location is one of the most important context information in mobile and ubiquitous computing, large-scale deployment of indoor localization system remains elusive. In this work, we propose PiLoc, an indoor localization system that utilizes opportunistically sensed data contributed by users. Our system does not require manual calibration, prior knowledge and infrastructure support. The key novelty of PiLoc is that it merges walking segments annotated with displacement and signal strength information from users to derive a map of walking paths annotated with radio signal strengths. We evaluate PiLoc over 4 different indoor areas. Evaluation shows that our system can achieve an average localization error of 1.5m.","PeriodicalId":297218,"journal":{"name":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPSN.2014.6846748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

Abstract

While location is one of the most important context information in mobile and ubiquitous computing, large-scale deployment of indoor localization system remains elusive. In this work, we propose PiLoc, an indoor localization system that utilizes opportunistically sensed data contributed by users. Our system does not require manual calibration, prior knowledge and infrastructure support. The key novelty of PiLoc is that it merges walking segments annotated with displacement and signal strength information from users to derive a map of walking paths annotated with radio signal strengths. We evaluate PiLoc over 4 different indoor areas. Evaluation shows that our system can achieve an average localization error of 1.5m.
一种自校准的参与式室内定位系统
位置是移动计算和普适计算中最重要的上下文信息之一,但室内定位系统的大规模部署仍然是一个难以实现的问题。在这项工作中,我们提出了一种利用用户提供的机会感测数据的室内定位系统PiLoc。我们的系统不需要手动校准,先验知识和基础设施支持。PiLoc的关键新颖之处在于,它合并了带有位移和用户信号强度信息的步行段,从而得出带有无线电信号强度注释的步行路径地图。我们在4个不同的室内区域评估了PiLoc。评估表明,该系统的平均定位误差为1.5m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信