O. Mendoza-Schrock, M. Rizki, V. Velten
{"title":"Manifold Transfer Subspace Learning (MTSL) for Applications in Aided Target Recognition","authors":"O. Mendoza-Schrock, M. Rizki, V. Velten","doi":"10.4018/IJMSTR.2017070102","DOIUrl":null,"url":null,"abstract":"Thisarticledescribeshowtransfersubspacelearninghasrecentlygainedpopularity foritsabilitytoperformcross-datasetandcross-domainobjectrecognition.Theability toleverageexistingdatawithouttheneedforadditionaldatacollectionsisattractive formonitoringandsurveillancetechnology,specificallyforaidedtargetrecognition applications. Transfer subspace learning enables the incorporation of sparse and dynamicallycollecteddataintoexistingsystemsthatutilizelargedatabases.Manifold learninghasalsogainedpopularityforitssuccessatdimensionalityreduction.Inthis contribution,Manifoldlearningandtransfersubspacelearningarecombinedtocreate anewsystemcapableofachievinghightargetrecognitionrates.Themanifoldlearning technique used in this contribution is diffusion maps, a nonlinear dimensionality reductiontechniquebasedonaheatdiffusionanalogy.Thetransfersubspacelearning techniqueusedisTransferFisher’sLinearDiscriminativeAnalysis.Thenewsystem, manifold transfer subspace learning, sequentially integrates manifold learning and transfersubspacelearning.Inthisarticle,theabilityofthenewtechniquestoachieve high target recognition rates for cross-dataset and cross-domain applications is illustratedusingavarietyofdiversedatasets. KeywoRdS Diffusion Maps, Manifold Learning, Target Recognition, Transfer Learning, Transfer Subspace Learning","PeriodicalId":170761,"journal":{"name":"Int. J. Monit. Surveillance Technol. Res.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Monit. Surveillance Technol. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJMSTR.2017070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
流形转移子空间学习在辅助目标识别中的应用
Thisarticledescribeshowtransfersubspacelearninghasrecentlygainedpopularity foritsabilitytoperformcross-datasetandcross-domainobjectrecognition。Theability toleverageexistingdatawithouttheneedforadditionaldatacollectionsisattractive formonitoringandsurveillancetechnology,specificallyforaidedtargetrecognition应用程序。transfersubspacelearning_使sparse_和dynamicallycollecteddataintoexistingsystemsthatutilizelargedatabases的结合成为可能。Manifold learninghasalsogainedpopularityforitssuccessatdimensionalityreduction。Inthis贡献,Manifoldlearningandtransfersubspacelearningarecombinedtocreate anewsystemcapableofachievinghightargetrecognitionrates。Themanifoldlearning技术在这个贡献中使用的是扩散图,一个非线性维度reductiontechniquebasedonaheatdiffusionanalogy。Thetransfersubspacelearning techniqueusedisTransferFisher 'sLinearDiscriminativeAnalysis。Thenewsystem,“流形”转移“子空间”学习,“顺序地”整合“流形”学习和“transfersubspacelearning”。Inthisarticle,theabilityofthenewtechniquestoachieve对于跨数据集和跨域名应用程序的高目标识别率是illustratedusingavarietyofdiversedatasets。关键词扩散图,流形学习,目标识别,迁移学习,迁移子空间学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。