Manifold Transfer Subspace Learning (MTSL) for Applications in Aided Target Recognition

O. Mendoza-Schrock, M. Rizki, V. Velten
{"title":"Manifold Transfer Subspace Learning (MTSL) for Applications in Aided Target Recognition","authors":"O. Mendoza-Schrock, M. Rizki, V. Velten","doi":"10.4018/IJMSTR.2017070102","DOIUrl":null,"url":null,"abstract":"Thisarticledescribeshowtransfersubspacelearninghasrecentlygainedpopularity foritsabilitytoperformcross-datasetandcross-domainobjectrecognition.Theability toleverageexistingdatawithouttheneedforadditionaldatacollectionsisattractive formonitoringandsurveillancetechnology,specificallyforaidedtargetrecognition applications. Transfer subspace learning enables the incorporation of sparse and dynamicallycollecteddataintoexistingsystemsthatutilizelargedatabases.Manifold learninghasalsogainedpopularityforitssuccessatdimensionalityreduction.Inthis contribution,Manifoldlearningandtransfersubspacelearningarecombinedtocreate anewsystemcapableofachievinghightargetrecognitionrates.Themanifoldlearning technique used in this contribution is diffusion maps, a nonlinear dimensionality reductiontechniquebasedonaheatdiffusionanalogy.Thetransfersubspacelearning techniqueusedisTransferFisher’sLinearDiscriminativeAnalysis.Thenewsystem, manifold transfer subspace learning, sequentially integrates manifold learning and transfersubspacelearning.Inthisarticle,theabilityofthenewtechniquestoachieve high target recognition rates for cross-dataset and cross-domain applications is illustratedusingavarietyofdiversedatasets. KeywoRdS Diffusion Maps, Manifold Learning, Target Recognition, Transfer Learning, Transfer Subspace Learning","PeriodicalId":170761,"journal":{"name":"Int. J. Monit. Surveillance Technol. Res.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Monit. Surveillance Technol. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJMSTR.2017070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thisarticledescribeshowtransfersubspacelearninghasrecentlygainedpopularity foritsabilitytoperformcross-datasetandcross-domainobjectrecognition.Theability toleverageexistingdatawithouttheneedforadditionaldatacollectionsisattractive formonitoringandsurveillancetechnology,specificallyforaidedtargetrecognition applications. Transfer subspace learning enables the incorporation of sparse and dynamicallycollecteddataintoexistingsystemsthatutilizelargedatabases.Manifold learninghasalsogainedpopularityforitssuccessatdimensionalityreduction.Inthis contribution,Manifoldlearningandtransfersubspacelearningarecombinedtocreate anewsystemcapableofachievinghightargetrecognitionrates.Themanifoldlearning technique used in this contribution is diffusion maps, a nonlinear dimensionality reductiontechniquebasedonaheatdiffusionanalogy.Thetransfersubspacelearning techniqueusedisTransferFisher’sLinearDiscriminativeAnalysis.Thenewsystem, manifold transfer subspace learning, sequentially integrates manifold learning and transfersubspacelearning.Inthisarticle,theabilityofthenewtechniquestoachieve high target recognition rates for cross-dataset and cross-domain applications is illustratedusingavarietyofdiversedatasets. KeywoRdS Diffusion Maps, Manifold Learning, Target Recognition, Transfer Learning, Transfer Subspace Learning
流形转移子空间学习在辅助目标识别中的应用
Thisarticledescribeshowtransfersubspacelearninghasrecentlygainedpopularity foritsabilitytoperformcross-datasetandcross-domainobjectrecognition。Theability toleverageexistingdatawithouttheneedforadditionaldatacollectionsisattractive formonitoringandsurveillancetechnology,specificallyforaidedtargetrecognition应用程序。transfersubspacelearning_使sparse_和dynamicallycollecteddataintoexistingsystemsthatutilizelargedatabases的结合成为可能。Manifold learninghasalsogainedpopularityforitssuccessatdimensionalityreduction。Inthis贡献,Manifoldlearningandtransfersubspacelearningarecombinedtocreate anewsystemcapableofachievinghightargetrecognitionrates。Themanifoldlearning技术在这个贡献中使用的是扩散图,一个非线性维度reductiontechniquebasedonaheatdiffusionanalogy。Thetransfersubspacelearning techniqueusedisTransferFisher 'sLinearDiscriminativeAnalysis。Thenewsystem,“流形”转移“子空间”学习,“顺序地”整合“流形”学习和“transfersubspacelearning”。Inthisarticle,theabilityofthenewtechniquestoachieve对于跨数据集和跨域名应用程序的高目标识别率是illustratedusingavarietyofdiversedatasets。关键词扩散图,流形学习,目标识别,迁移学习,迁移子空间学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信