Collaborative Drug Discovery: Inference-level Data Protection Perspective

Balázs Pejó, Mina Remeli, Adam Arany, M. Galtier, G. Ács
{"title":"Collaborative Drug Discovery: Inference-level Data Protection Perspective","authors":"Balázs Pejó, Mina Remeli, Adam Arany, M. Galtier, G. Ács","doi":"10.48550/arXiv.2205.06506","DOIUrl":null,"url":null,"abstract":"Pharmaceutical industry can better leverage its data assets to virtualize drug discovery through a collaborative machine learning platform. On the other hand, there are non-negligible risks stemming from the unintended leakage of participants' training data, hence, it is essential for such a platform to be secure and privacy-preserving. This paper describes a privacy risk assessment for collaborative modeling in the preclinical phase of drug discovery to accelerate the selection of promising drug candidates. After a short taxonomy of state-of-the-art inference attacks we adopt and customize several to the underlying scenario. Finally we describe and experiments with a handful of relevant privacy protection techniques to mitigate such attacks.","PeriodicalId":374808,"journal":{"name":"Trans. Data Priv.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trans. Data Priv.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.06506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Pharmaceutical industry can better leverage its data assets to virtualize drug discovery through a collaborative machine learning platform. On the other hand, there are non-negligible risks stemming from the unintended leakage of participants' training data, hence, it is essential for such a platform to be secure and privacy-preserving. This paper describes a privacy risk assessment for collaborative modeling in the preclinical phase of drug discovery to accelerate the selection of promising drug candidates. After a short taxonomy of state-of-the-art inference attacks we adopt and customize several to the underlying scenario. Finally we describe and experiments with a handful of relevant privacy protection techniques to mitigate such attacks.
协同药物发现:推断级数据保护视角
制药行业可以通过协作机器学习平台更好地利用其数据资产来虚拟化药物发现。另一方面,参与者的培训数据意外泄露也存在不可忽视的风险,因此,这样一个平台的安全性和隐私保护是至关重要的。本文描述了一种用于药物发现临床前阶段协作建模的隐私风险评估,以加速有希望的候选药物的选择。在对最先进的推理攻击进行了简短的分类之后,我们针对底层场景采用并定制了几种攻击。最后,我们描述和实验了一些相关的隐私保护技术来减轻这种攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信