{"title":"EBIRCH Localization for Low-Current Soft Fails","authors":"Gregory M. Johnson, A. Rummel","doi":"10.31399/asm.cp.istfa2021p0253","DOIUrl":null,"url":null,"abstract":"An experimental study was undertaken to determine the minimum level of leakage or shorting current could be detected by EBIRCH. A 22 nm SRAM array was overstressed with a series gradually increasing bias, followed by EBIRCH scans with 1 V applied bias and 2 kV SEM imaging, until fins were observed. The result was that with only 12 nA of shorting current, the fins of a pulldown device could be imaged by EBIRCH. Higher stresses created an ohmic short, and careful consideration of experiments with current direction provide additional evidence that EBIRCH is largely a temperaturedriven, or Seebeck effect.","PeriodicalId":188323,"journal":{"name":"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2021p0253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An experimental study was undertaken to determine the minimum level of leakage or shorting current could be detected by EBIRCH. A 22 nm SRAM array was overstressed with a series gradually increasing bias, followed by EBIRCH scans with 1 V applied bias and 2 kV SEM imaging, until fins were observed. The result was that with only 12 nA of shorting current, the fins of a pulldown device could be imaged by EBIRCH. Higher stresses created an ohmic short, and careful consideration of experiments with current direction provide additional evidence that EBIRCH is largely a temperaturedriven, or Seebeck effect.