Time Series Classification and its Applications

Krisztián Búza
{"title":"Time Series Classification and its Applications","authors":"Krisztián Búza","doi":"10.1145/3227609.3227690","DOIUrl":null,"url":null,"abstract":"Time-series classification is one of the most important machine learning tasks related to time series. It is the common denominator in various recognition tasks, such as signature verification, person identification based on keystroke dynamics, detection of cardiovascular diseases and brain disorders (e.g. early stage of Alzheimer disease or dementia). This tutorial aims to give an introduction to the most prominent challenges, methods, evaluation protocols and biomedical applications related to time series classification. Besides the \"conventional\" time series classification task, early classification and semi-supervised classification will be considered. Both preprocessing techniques -- FFT, SAX, etc. -- and wide-spread classifiers -- such as similarity-based, feature-based, motif/shaplet-based classifiers and convolutional neural networks -- will be covered. As dynamic time warping (DTW) is the one of the key components of many time series classifiers, including recent ones based on deep learning, we will describe this technique in detail. Slides: http://www.biointelligence.hu/pdf/timeseriestutorial.pdf","PeriodicalId":447157,"journal":{"name":"Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3227609.3227690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Time-series classification is one of the most important machine learning tasks related to time series. It is the common denominator in various recognition tasks, such as signature verification, person identification based on keystroke dynamics, detection of cardiovascular diseases and brain disorders (e.g. early stage of Alzheimer disease or dementia). This tutorial aims to give an introduction to the most prominent challenges, methods, evaluation protocols and biomedical applications related to time series classification. Besides the "conventional" time series classification task, early classification and semi-supervised classification will be considered. Both preprocessing techniques -- FFT, SAX, etc. -- and wide-spread classifiers -- such as similarity-based, feature-based, motif/shaplet-based classifiers and convolutional neural networks -- will be covered. As dynamic time warping (DTW) is the one of the key components of many time series classifiers, including recent ones based on deep learning, we will describe this technique in detail. Slides: http://www.biointelligence.hu/pdf/timeseriestutorial.pdf
时间序列分类及其应用
时间序列分类是时间序列相关的最重要的机器学习任务之一。它是各种识别任务的共同点,例如签名验证,基于击键动力学的人员识别,心血管疾病和脑部疾病(例如早期阿尔茨海默病或痴呆症)的检测。本教程旨在介绍与时间序列分类相关的最突出的挑战、方法、评估方案和生物医学应用。除了“传统”的时间序列分类任务外,还将考虑早期分类和半监督分类。这两种预处理技术- FFT, SAX等-和广泛传播的分类器-如基于相似性,基于特征,基于图案/形状的分类器和卷积神经网络-将被覆盖。由于动态时间规整(DTW)是许多时间序列分类器的关键组成部分之一,包括最近基于深度学习的分类器,我们将详细描述该技术。幻灯片:http://www.biointelligence.hu/pdf/timeseriestutorial.pdf
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信