Evaluation of Thermal Comfort in a Multi-Occupancy Office using Polak-Ribiére Conjugate Gradient Neuro-Algorithm

A. Ojo, Onibonoje Moses Oluwafemi
{"title":"Evaluation of Thermal Comfort in a Multi-Occupancy Office using Polak-Ribiére Conjugate Gradient Neuro-Algorithm","authors":"A. Ojo, Onibonoje Moses Oluwafemi","doi":"10.1109/NIGERCON54645.2022.9803185","DOIUrl":null,"url":null,"abstract":"The evaluation of the level of satisfaction in an indoor air-conditioned environment is an important factor in order to determine the optimum settings for efficient and effective performance of Heating, Ventilation and Air Conditioning (HVAC) systems. In this paper, an efficient and user-friendly thermal comfort evaluation technique is presented. An Artificial Neural Network (ANN) model was developed using the Polak-Ribiére Conjugate Gradient (PRCG) algorithm to solve the problem of evaluating thermal comfort in a multi-occupancy office. The network employs mean radiant temperature, indoor air temperature, relative humidity, metabolic rate, air velocity and clothing insulation as inputs and the predicted mean vote value (PMVV) as the output. In order to validate the performance thereof, the PRCG-trained network was retrained and simulated using the Levenberg-Marquardt (LM) algorithm. The results show that the model performed satisfactorily in evaluating the comfort of occupants and stands as a rapid tool for HVAC system designers in analyzing HVAC systems.","PeriodicalId":328381,"journal":{"name":"2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NIGERCON54645.2022.9803185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The evaluation of the level of satisfaction in an indoor air-conditioned environment is an important factor in order to determine the optimum settings for efficient and effective performance of Heating, Ventilation and Air Conditioning (HVAC) systems. In this paper, an efficient and user-friendly thermal comfort evaluation technique is presented. An Artificial Neural Network (ANN) model was developed using the Polak-Ribiére Conjugate Gradient (PRCG) algorithm to solve the problem of evaluating thermal comfort in a multi-occupancy office. The network employs mean radiant temperature, indoor air temperature, relative humidity, metabolic rate, air velocity and clothing insulation as inputs and the predicted mean vote value (PMVV) as the output. In order to validate the performance thereof, the PRCG-trained network was retrained and simulated using the Levenberg-Marquardt (LM) algorithm. The results show that the model performed satisfactorily in evaluating the comfort of occupants and stands as a rapid tool for HVAC system designers in analyzing HVAC systems.
基于polak - ribi共轭梯度神经算法的多人办公热舒适评价
对室内空调环境满意度的评估是确定采暖、通风和空调(HVAC)系统高效性能的最佳设置的重要因素。本文提出了一种高效、用户友好的热舒适性评价方法。采用polak - ribi共轭梯度(PRCG)算法建立人工神经网络(ANN)模型,对多人办公空间的热舒适性进行评价。该网络采用平均辐射温度、室内空气温度、相对湿度、代谢率、风速和衣物保温作为输入,预测的平均投票值(PMVV)作为输出。为了验证其性能,使用Levenberg-Marquardt (LM)算法对prcg训练后的网络进行再训练和仿真。结果表明,该模型能较好地评价使用者的舒适度,为暖通空调系统设计人员分析暖通空调系统提供了一个快速的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信