Rate Control with Autoregressive Forecasting for High Frequency Communication

A. Ko, Thomas Stahlbuhk, B. Shrader
{"title":"Rate Control with Autoregressive Forecasting for High Frequency Communication","authors":"A. Ko, Thomas Stahlbuhk, B. Shrader","doi":"10.1109/MILCOM55135.2022.10017499","DOIUrl":null,"url":null,"abstract":"This work introduces a data-driven framework for rate control and applies it to high frequency (HF) communication systems that propagate via the Earth's ionosphere. The rate control approach uses statistical techniques to forecast channel state with an autoregressive (AR) model, which has previously been applied to different forms of wireless fading, including “medium” timescale fading at HF. The objective of rate control is to maximize the data rate while constraining the rate of packets decoded in error. We show that under ideal assumptions, the rate controller selects the rate by backing off from the forecast average signal-to-noise ratio (SNR) by a factor of $\\sigma Q^{-1}(\\beta)$, where $\\sigma^{2}$ correlates with fading variance, $\\beta$ denotes a constraint on decoder errors, and $Q(\\cdot)$ is the complementary cumulative distribution function of the Gaussian distribution. Simulation results on an HF channel model show that compared with naive schemes, AR forecasting provides a good balance between achieving high rate and ensuring reliability.","PeriodicalId":239804,"journal":{"name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM55135.2022.10017499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces a data-driven framework for rate control and applies it to high frequency (HF) communication systems that propagate via the Earth's ionosphere. The rate control approach uses statistical techniques to forecast channel state with an autoregressive (AR) model, which has previously been applied to different forms of wireless fading, including “medium” timescale fading at HF. The objective of rate control is to maximize the data rate while constraining the rate of packets decoded in error. We show that under ideal assumptions, the rate controller selects the rate by backing off from the forecast average signal-to-noise ratio (SNR) by a factor of $\sigma Q^{-1}(\beta)$, where $\sigma^{2}$ correlates with fading variance, $\beta$ denotes a constraint on decoder errors, and $Q(\cdot)$ is the complementary cumulative distribution function of the Gaussian distribution. Simulation results on an HF channel model show that compared with naive schemes, AR forecasting provides a good balance between achieving high rate and ensuring reliability.
基于自回归预测的高频通信速率控制
这项工作引入了一个数据驱动的速率控制框架,并将其应用于通过地球电离层传播的高频(HF)通信系统。速率控制方法使用统计技术和自回归(AR)模型来预测信道状态,该模型先前已应用于不同形式的无线衰落,包括高频的“中等”时间尺度衰落。速率控制的目标是在限制误码率的同时使数据速率最大化。我们表明,在理想假设下,速率控制器通过$\sigma Q^{-1}(\beta)$因子从预测的平均信噪比(SNR)中后退来选择速率,其中$\sigma^{2}$与衰落方差相关,$\beta$表示对解码器误差的约束,$Q(\cdot)$是高斯分布的互补累积分布函数。在高频信道模型上的仿真结果表明,与原始方案相比,增强现实预测在实现高速率和保证可靠性之间取得了很好的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信