Informer

Jiyu Chen, Heqing Huang, Hao Chen
{"title":"Informer","authors":"Jiyu Chen, Heqing Huang, Hao Chen","doi":"10.1145/3318216.3363375","DOIUrl":null,"url":null,"abstract":"Containerized microservices have been widely deployed in industry. Meanwhile, security issues also arise. Many security enhancement mechanisms for containerized microservices require predefined rules and policies. However, it is challenging when it comes to thousands of microservices and a massive amount of real-time unstructured data. Hence, automatic policy generation becomes indispensable. In this paper, we focus on the automatic solution for the security problem: irregular traffic detection for RPCs. We propose Informer, which is a two-phase machine learning framework to track the traffic of each RPC and report anomalous points automatically. Firstly, we identify RPC chain patterns by density-based clustering techniques and build a graph for each critical pattern. Next, we solve the irregular RPC traffic detection problem as a prediction problem for time-series of attributed graphs by leveraging spatial-temporal graph convolution networks. Since the framework builds multiple models and makes individual predictions for each RPC chain pattern, it can be efficiently updated upon legitimate changes in any of the graphs. In evaluations, we applied Informer to a dataset containing more than 7 billion lines of raw RPC logs sampled from an large Kubernetes system for two weeks. We provide two case studies of detected real-world threats. As a result, our framework found fine-grained RPC chain patterns and accurately captured the anomalies in a dynamic and complicated microservice production scenario, which demonstrates the effectiveness of Informer.","PeriodicalId":406118,"journal":{"name":"Proceedings of the 4th ACM/IEEE Symposium on Edge Computing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th ACM/IEEE Symposium on Edge Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318216.3363375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Containerized microservices have been widely deployed in industry. Meanwhile, security issues also arise. Many security enhancement mechanisms for containerized microservices require predefined rules and policies. However, it is challenging when it comes to thousands of microservices and a massive amount of real-time unstructured data. Hence, automatic policy generation becomes indispensable. In this paper, we focus on the automatic solution for the security problem: irregular traffic detection for RPCs. We propose Informer, which is a two-phase machine learning framework to track the traffic of each RPC and report anomalous points automatically. Firstly, we identify RPC chain patterns by density-based clustering techniques and build a graph for each critical pattern. Next, we solve the irregular RPC traffic detection problem as a prediction problem for time-series of attributed graphs by leveraging spatial-temporal graph convolution networks. Since the framework builds multiple models and makes individual predictions for each RPC chain pattern, it can be efficiently updated upon legitimate changes in any of the graphs. In evaluations, we applied Informer to a dataset containing more than 7 billion lines of raw RPC logs sampled from an large Kubernetes system for two weeks. We provide two case studies of detected real-world threats. As a result, our framework found fine-grained RPC chain patterns and accurately captured the anomalies in a dynamic and complicated microservice production scenario, which demonstrates the effectiveness of Informer.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信