{"title":"Modular Bidirectional Converter with Multiple Power Sources for Fast Charging of Electric Vehicles","authors":"Abdalrahman Elshora, Y. Elsayed, H. Gabbar","doi":"10.1109/SEGE52446.2021.9535008","DOIUrl":null,"url":null,"abstract":"Canadian transportation sector has been reported recently as the second-largest source of GHG. Therefore, researchers have been interested in developing charging control systems for electrical vehicles. The main two challenges are the size of the energy storage and the charging time. Researches prove that hybrid energy storage can increase energy density and reliability besides reducing the total cost of energy. However, managing multiple sources of energy is a big challenge. This paper introduces a bidirectional DC-DC converter that can manage hybrid energy storage composed of multiple sources of energy. It enables the modular extension of input energy sources by adding few components. It enables power flow in all possible directions. The proposed converter has been simulated by using Matlab Simulink and validated the most operating scenarios of charging and discharging successfully.","PeriodicalId":438266,"journal":{"name":"2021 IEEE 9th International Conference on Smart Energy Grid Engineering (SEGE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 9th International Conference on Smart Energy Grid Engineering (SEGE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEGE52446.2021.9535008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Canadian transportation sector has been reported recently as the second-largest source of GHG. Therefore, researchers have been interested in developing charging control systems for electrical vehicles. The main two challenges are the size of the energy storage and the charging time. Researches prove that hybrid energy storage can increase energy density and reliability besides reducing the total cost of energy. However, managing multiple sources of energy is a big challenge. This paper introduces a bidirectional DC-DC converter that can manage hybrid energy storage composed of multiple sources of energy. It enables the modular extension of input energy sources by adding few components. It enables power flow in all possible directions. The proposed converter has been simulated by using Matlab Simulink and validated the most operating scenarios of charging and discharging successfully.