A new method of generating multivariate Weibull distributed data

J. Metcalf, K. J. Sangston, M. Rangaswamy, S. Blunt, B. Himed
{"title":"A new method of generating multivariate Weibull distributed data","authors":"J. Metcalf, K. J. Sangston, M. Rangaswamy, S. Blunt, B. Himed","doi":"10.1109/RADAR.2016.7485287","DOIUrl":null,"url":null,"abstract":"In order to fully test detector frameworks, it is important to have representative simulated clutter data readily available. While measured clutter data has often been fit to the Weibull distribution, generation of simulated complex multivariate Weibull data with prescribed covariance structure has been a challenging problem. As the multivariate Weibull distribution is admissible as a spherically invariant random vector for a specific range of shape parameter values, it can be decomposed as the product of a modulating random variable and a complex Gaussian random vector. Here we use this representation to compare the traditional method of generating multivariate Weibull data using the Rejection Method to a new approximation of the modulating random variable that lends itself to efficient computer generation.","PeriodicalId":185932,"journal":{"name":"2016 IEEE Radar Conference (RadarConf)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Radar Conference (RadarConf)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2016.7485287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In order to fully test detector frameworks, it is important to have representative simulated clutter data readily available. While measured clutter data has often been fit to the Weibull distribution, generation of simulated complex multivariate Weibull data with prescribed covariance structure has been a challenging problem. As the multivariate Weibull distribution is admissible as a spherically invariant random vector for a specific range of shape parameter values, it can be decomposed as the product of a modulating random variable and a complex Gaussian random vector. Here we use this representation to compare the traditional method of generating multivariate Weibull data using the Rejection Method to a new approximation of the modulating random variable that lends itself to efficient computer generation.
生成多元威布尔分布数据的新方法
为了全面测试检测器框架,有代表性的模拟杂波数据是很重要的。虽然测量杂波数据通常符合威布尔分布,但具有规定协方差结构的模拟复杂多元威布尔数据的生成一直是一个具有挑战性的问题。由于多元威布尔分布在一定的形状参数值范围内是球不变的随机向量,它可以分解为一个调制随机变量和一个复高斯随机向量的乘积。在这里,我们使用这种表示来比较使用拒绝方法生成多元威布尔数据的传统方法与调制随机变量的新近似值,这种近似值有助于高效的计算机生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信