Deep Learning assisted Cervical Cancer Classification with Residual Skip Convolution Neural Network (Res _ Skip _ CNN)- based Nuclei segmentation on Histopathological Images

R. Laxmi, B. Kirubagari, S. LakshmanaPandian.
{"title":"Deep Learning assisted Cervical Cancer Classification with Residual Skip Convolution Neural Network (Res _ Skip _ CNN)- based Nuclei segmentation on Histopathological Images","authors":"R. Laxmi, B. Kirubagari, S. LakshmanaPandian.","doi":"10.1109/ICCPC55978.2022.10072233","DOIUrl":null,"url":null,"abstract":"Cervical cancer (CC) remains the second most typical cancer in women internationally having a death too of sixty percent. CC starts with nil obvious symptoms and possesses a lengthy latency turning initial diagnosis via periodical health checks extremely significant. The problem of automatic technique to identify CC is proffered for enhancing the detection's precision. The CC histology source images will be required for employing image preprocessing to lessen the effect resulting from the images noise alongside the effect upon succeeding accurate feature extraction resulting in impertinent background. The images will be segmented employing the Residual Skip Convolution Neural Network (Res_Skip_CNN) centered upon 4 renowned discriminative attributes: i) nuclei's proportion to the cytoplasm, ii) nuclei's diameter, iii) shape factor, iv) nuclei's roundness. The random forest classification paradigm would be considered as an input to the cervix's segmented image having the epithelium layer for aiding the diagnostician in CC detection. We assess the execution of the proffered Res_Skip_CNN with RF (Res_Skip_CNN-RF) classifier opposing the Herley datasets employing a variable classes quantity while doing image classification. Consequently, it is observed that the proffered Res_Skip_CNN-RF attains 95% of Accuracy, 93% of Precision, 89% of Recall, and 85% of Fl-Score.","PeriodicalId":367848,"journal":{"name":"2022 International Conference on Computer, Power and Communications (ICCPC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Computer, Power and Communications (ICCPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPC55978.2022.10072233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cervical cancer (CC) remains the second most typical cancer in women internationally having a death too of sixty percent. CC starts with nil obvious symptoms and possesses a lengthy latency turning initial diagnosis via periodical health checks extremely significant. The problem of automatic technique to identify CC is proffered for enhancing the detection's precision. The CC histology source images will be required for employing image preprocessing to lessen the effect resulting from the images noise alongside the effect upon succeeding accurate feature extraction resulting in impertinent background. The images will be segmented employing the Residual Skip Convolution Neural Network (Res_Skip_CNN) centered upon 4 renowned discriminative attributes: i) nuclei's proportion to the cytoplasm, ii) nuclei's diameter, iii) shape factor, iv) nuclei's roundness. The random forest classification paradigm would be considered as an input to the cervix's segmented image having the epithelium layer for aiding the diagnostician in CC detection. We assess the execution of the proffered Res_Skip_CNN with RF (Res_Skip_CNN-RF) classifier opposing the Herley datasets employing a variable classes quantity while doing image classification. Consequently, it is observed that the proffered Res_Skip_CNN-RF attains 95% of Accuracy, 93% of Precision, 89% of Recall, and 85% of Fl-Score.
基于残差跳跃卷积神经网络(Res _ Skip _ CNN)对组织病理图像进行核分割的深度学习辅助子宫颈癌分类
宫颈癌(CC)仍然是国际上第二大最常见的妇女癌症,死亡率也为60%。CC开始时无明显症状,并且具有较长的潜伏期,通过定期健康检查进行初步诊断非常重要。为提高检测精度,提出了CC自动识别技术问题。CC组织学源图像将需要采用图像预处理,以减少由图像噪声引起的影响,以及在成功准确的特征提取后导致不相关背景的影响。图像将使用残差跳跃卷积神经网络(Res_Skip_CNN)以4个著名的判别属性为中心进行分割:i)细胞核与细胞质的比例,ii)细胞核的直径,iii)形状因子,iv)细胞核的圆度。随机森林分类范例将被认为是子宫颈具有上皮层的分割图像的输入,以帮助诊断医师检测CC。在进行图像分类时,我们评估了提供的Res_Skip_CNN与RF (Res_Skip_CNN-RF)分类器的执行情况,而不是使用可变类数量的Herley数据集。因此,可以观察到,提供的Res_Skip_CNN-RF达到95%的准确率,93%的精度,89%的召回率和85%的Fl-Score。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信