Cost-Sensitive Strategies for Data Imbalance in Bug Severity Classification: Experimental Results

Nivir Kanti Singha Roy, B. Rossi
{"title":"Cost-Sensitive Strategies for Data Imbalance in Bug Severity Classification: Experimental Results","authors":"Nivir Kanti Singha Roy, B. Rossi","doi":"10.1109/SEAA.2017.71","DOIUrl":null,"url":null,"abstract":"Context: Software Bug Severity Classification can help to improve the software bug triaging process. However, severity levels present a high-level of data imbalance that needs to be taken into account. Aim: We investigate cost-sensitive strategies in multi-class bug severity classification to counteract data imbalance. Method: We transform datasets from three severity classification papers to a common format, totaling 17 projects. We test different cost sensitive strategies to penalize majority classes. We adopt a Support Vector Machine (SVM) classifier that we also compare to a baseline \"majority class\" classifier. Results: A model weighting classes based on the inverse of instance frequencies yields a statistically significant improvement (low effect size) over the standard unweighted SVM model in the assembled dataset. Conclusions: Data imbalance should be taken more into consideration in future severity classification research papers.","PeriodicalId":151513,"journal":{"name":"2017 43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 43rd Euromicro Conference on Software Engineering and Advanced Applications (SEAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEAA.2017.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Context: Software Bug Severity Classification can help to improve the software bug triaging process. However, severity levels present a high-level of data imbalance that needs to be taken into account. Aim: We investigate cost-sensitive strategies in multi-class bug severity classification to counteract data imbalance. Method: We transform datasets from three severity classification papers to a common format, totaling 17 projects. We test different cost sensitive strategies to penalize majority classes. We adopt a Support Vector Machine (SVM) classifier that we also compare to a baseline "majority class" classifier. Results: A model weighting classes based on the inverse of instance frequencies yields a statistically significant improvement (low effect size) over the standard unweighted SVM model in the assembled dataset. Conclusions: Data imbalance should be taken more into consideration in future severity classification research papers.
Bug严重性分类中数据不平衡的代价敏感策略:实验结果
背景:软件缺陷严重性分类可以帮助改进软件缺陷分类过程。但是,严重性级别表示需要考虑的数据高度不平衡。目的:研究多类漏洞严重程度分类中成本敏感策略对数据不平衡的影响。方法:我们将三篇严重性分类论文的数据集转换为通用格式,共计17个项目。我们测试了不同的成本敏感策略来惩罚大多数类别。我们采用支持向量机(SVM)分类器,我们也将其与基线“多数类”分类器进行比较。结果:与组装数据集中的标准未加权SVM模型相比,基于实例频率逆的模型加权类在统计上有显著的改进(低效应大小)。结论:在未来的严重性分类研究论文中,应更多地考虑数据不平衡问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信