Ultrafine manipulation considering input saturation using proxy-based sliding mode control

Fumito Nishi, S. Katsura
{"title":"Ultrafine manipulation considering input saturation using proxy-based sliding mode control","authors":"Fumito Nishi, S. Katsura","doi":"10.1109/ICMECH.2015.7084035","DOIUrl":null,"url":null,"abstract":"Medical technology and bioengineering have achieved great progress recently. The main reasons are the technique and manipulation system in order to operate the cell directly, but the operational force can not be fedback to the operators. Macro-micro bilateral control is the method for force transmission between operator and target object. However, in macro-micro bilateral control, the reference values to the actuator often become too large due to the controller with high gain and scaling factor. Then, the wind-up phenomenon happens due to the actuator-force saturation and undesired and dangerous behavior might occur. To solve this problem, this paper proposes macro-micro bilateral control using the proxy-based sliding mode control. Proxy-based sliding mode control is the method that simple sliding mode control and PID or PD are combined. PSMC is one of the anti-windup method because the saturation function is equivalently considered in the control algorithm. The force saturation can be avoided by using PSMC. The validity of the proposed method is verified by the experimental results.","PeriodicalId":179621,"journal":{"name":"2015 IEEE International Conference on Mechatronics (ICM)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMECH.2015.7084035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Medical technology and bioengineering have achieved great progress recently. The main reasons are the technique and manipulation system in order to operate the cell directly, but the operational force can not be fedback to the operators. Macro-micro bilateral control is the method for force transmission between operator and target object. However, in macro-micro bilateral control, the reference values to the actuator often become too large due to the controller with high gain and scaling factor. Then, the wind-up phenomenon happens due to the actuator-force saturation and undesired and dangerous behavior might occur. To solve this problem, this paper proposes macro-micro bilateral control using the proxy-based sliding mode control. Proxy-based sliding mode control is the method that simple sliding mode control and PID or PD are combined. PSMC is one of the anti-windup method because the saturation function is equivalently considered in the control algorithm. The force saturation can be avoided by using PSMC. The validity of the proposed method is verified by the experimental results.
基于代理滑模控制的考虑输入饱和的超细操纵
近年来,医学技术和生物工程取得了很大的进步。主要原因是技术和操作系统为了直接操作细胞,而操作力不能反馈给操作者。宏微观双边控制是操作者与目标对象之间的力传递方法。然而,在宏观-微观双边控制中,由于控制器具有高增益和比例因子,致动器的参考值往往过大。然后,由于致动器力饱和而产生上紧现象,可能产生不良的危险行为。为了解决这一问题,本文提出了基于代理的滑模控制的宏微观双边控制。基于代理的滑模控制是将简单的滑模控制与PID或PD相结合的方法。由于在控制算法中等效地考虑了饱和函数,因此PSMC是一种抗上发条方法。采用PSMC可以避免力饱和。实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信