CFD Simulation for Propeller Four-Quadrant Flows

Sing-Kwan Lee
{"title":"CFD Simulation for Propeller Four-Quadrant Flows","authors":"Sing-Kwan Lee","doi":"10.5957/pss-2006-04","DOIUrl":null,"url":null,"abstract":"A Reynolds-Averaged Navier-Stokes (RANS) method has been employed in conjunction with an overlapping moving grid approach to provide accurate resolution of four-quadrant propeller flows under both the design and off-design conditions. It is well known that some off-design propeller flow phenomena are dominated by viscous effects and cannot be accurately predicted by the potential flow methods. In order to properly account for viscous effects, it is necessary to employ accurate and robust numerical methods which can provide detailed resolution of the propeller boundary layer, turbulent wake, leading-edge separation, and unsteady ring vortices induced by propeller operations under off-design conditions. In this study, time-domain simulations are performed for the DTRC 4I18 propeller under ahead, bollard pull, crash-ahead, crash-astern, and backing conditions and compared with the available experimental data.","PeriodicalId":277779,"journal":{"name":"Day 1 Tue, September 12, 2006","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Tue, September 12, 2006","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5957/pss-2006-04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A Reynolds-Averaged Navier-Stokes (RANS) method has been employed in conjunction with an overlapping moving grid approach to provide accurate resolution of four-quadrant propeller flows under both the design and off-design conditions. It is well known that some off-design propeller flow phenomena are dominated by viscous effects and cannot be accurately predicted by the potential flow methods. In order to properly account for viscous effects, it is necessary to employ accurate and robust numerical methods which can provide detailed resolution of the propeller boundary layer, turbulent wake, leading-edge separation, and unsteady ring vortices induced by propeller operations under off-design conditions. In this study, time-domain simulations are performed for the DTRC 4I18 propeller under ahead, bollard pull, crash-ahead, crash-astern, and backing conditions and compared with the available experimental data.
螺旋桨四象限流动的CFD模拟
采用reynolds - average Navier-Stokes (RANS)方法与重叠移动网格方法相结合,提供了设计和非设计条件下四象限螺旋桨流动的精确分辨率。众所周知,一些非设计的螺旋桨流动现象是由粘性效应主导的,无法用势流方法准确预测。为了正确地考虑粘性效应,有必要采用精确和鲁棒的数值方法,以提供非设计工况下螺旋桨运行引起的螺旋桨边界层、湍流尾流、前缘分离和非定常环涡的详细分辨率。在本研究中,对DTRC 4I18螺旋桨在正转、系柱拉动、正撞、倒车和倒车等工况下进行了时域仿真,并与已有的实验数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信