Dictionary based action video classification with action bank

S. Wilson, M. Srinivas, C. Mohan
{"title":"Dictionary based action video classification with action bank","authors":"S. Wilson, M. Srinivas, C. Mohan","doi":"10.1109/ICDSP.2014.6900734","DOIUrl":null,"url":null,"abstract":"Classifying action videos became challenging problem in computer vision community. In this work, action videos are represented by dictionaries which are learned by online dictionary learning (ODL). Here, we have used two simple measures to classify action videos, reconstruction error and projection. Sparse approximation algorithm LASSO is used to reconstruct test video and reconstruction error is calculated for each of the dictionaries. To get another discriminative measure projection, the test vector is projected onto the atoms in the dictionary. Minimum reconstruction error and maximum projection give information regarding the action category of the test vector. With action bank as a feature vector, our best performance is 59.3% on UCF50 (benchmark is 57.9%), 97.7% on KTH (benchmark is 98.2%)and 23.63% on HMDB51 (benchmark is 26.9%).","PeriodicalId":301856,"journal":{"name":"2014 19th International Conference on Digital Signal Processing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 19th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2014.6900734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Classifying action videos became challenging problem in computer vision community. In this work, action videos are represented by dictionaries which are learned by online dictionary learning (ODL). Here, we have used two simple measures to classify action videos, reconstruction error and projection. Sparse approximation algorithm LASSO is used to reconstruct test video and reconstruction error is calculated for each of the dictionaries. To get another discriminative measure projection, the test vector is projected onto the atoms in the dictionary. Minimum reconstruction error and maximum projection give information regarding the action category of the test vector. With action bank as a feature vector, our best performance is 59.3% on UCF50 (benchmark is 57.9%), 97.7% on KTH (benchmark is 98.2%)and 23.63% on HMDB51 (benchmark is 26.9%).
基于字典的动作视频分类与动作库
动作视频分类已成为计算机视觉界的一个难题。在这项工作中,动作视频由在线字典学习(ODL)学习的字典表示。在这里,我们使用了两个简单的方法来分类动作视频,重建误差和投影。利用稀疏逼近算法LASSO对测试视频进行重构,并计算每个字典的重构误差。为了得到另一个判别测度投影,测试向量被投影到字典中的原子上。最小重建误差和最大投影给出了关于测试向量的动作类别的信息。以动作库作为特征向量,我们的最佳性能在UCF50上为59.3%(基准为57.9%),在KTH上为97.7%(基准为98.2%),在HMDB51上为23.63%(基准为26.9%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信