Leveraging Latent Economic Concepts and Sentiments in the News for Market Prediction

Saeede Anbaee Farimani, M. V. Jahan, A. M. Fard, Gholamreza Haffari
{"title":"Leveraging Latent Economic Concepts and Sentiments in the News for Market Prediction","authors":"Saeede Anbaee Farimani, M. V. Jahan, A. M. Fard, Gholamreza Haffari","doi":"10.1109/DSAA53316.2021.9564122","DOIUrl":null,"url":null,"abstract":"Most of the existing news-based market prediction techniques disregard conceptual and emotional relations in the news stream. In this work, we consider the conceptual relationship between news documents using contextualized latent concept modeling as well as leveraging news sentiment and technical indicators. We present our approach as an open-source RESTFul API. We build a corpus of financial news related to currency pairs in the Foreign Exchange and Cryptocurrencies markets. Next, we apply BERT-based embedding to generate word vectors, cluster the vectors to create latent economic concepts, and propose a document representation based on the distribution of words on these concepts as well as news sentiment. We use a recurrent convolutional neural network to jointly use BERT-based text representation and technical indicators embedding for market time series prediction. We further augment our model with technical indicators using another recurrent layer. The experimental results show the superiority of our method compared to the baselines. Our MarketNews dataset, news crawler, and MarketPredict APIs are available for public use.","PeriodicalId":129612,"journal":{"name":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA53316.2021.9564122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Most of the existing news-based market prediction techniques disregard conceptual and emotional relations in the news stream. In this work, we consider the conceptual relationship between news documents using contextualized latent concept modeling as well as leveraging news sentiment and technical indicators. We present our approach as an open-source RESTFul API. We build a corpus of financial news related to currency pairs in the Foreign Exchange and Cryptocurrencies markets. Next, we apply BERT-based embedding to generate word vectors, cluster the vectors to create latent economic concepts, and propose a document representation based on the distribution of words on these concepts as well as news sentiment. We use a recurrent convolutional neural network to jointly use BERT-based text representation and technical indicators embedding for market time series prediction. We further augment our model with technical indicators using another recurrent layer. The experimental results show the superiority of our method compared to the baselines. Our MarketNews dataset, news crawler, and MarketPredict APIs are available for public use.
利用新闻中潜在的经济概念和情绪进行市场预测
大多数现有的基于新闻的市场预测技术忽略了新闻流中的概念和情感关系。在这项工作中,我们使用情境化潜在概念建模以及利用新闻情感和技术指标来考虑新闻文档之间的概念关系。我们将我们的方法作为一个开源的RESTFul API。我们建立了一个与外汇和加密货币市场的货币对相关的金融新闻语料库。接下来,我们应用基于bert的嵌入来生成词向量,将这些向量聚类以创建潜在的经济概念,并提出基于这些概念上的词分布以及新闻情感的文档表示。我们使用循环卷积神经网络,将基于bert的文本表示和技术指标嵌入结合起来进行市场时间序列预测。我们使用另一个循环层用技术指标进一步增强我们的模型。实验结果表明了该方法相对于基线的优越性。我们的MarketNews数据集、新闻爬虫和MarketPredict api可供公众使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信