Simultaneous pedestrian and multiple mobile robots localization using distributed extended Kalman filter

I. Song, D. Kim, H. Ahn, V. Shin
{"title":"Simultaneous pedestrian and multiple mobile robots localization using distributed extended Kalman filter","authors":"I. Song, D. Kim, H. Ahn, V. Shin","doi":"10.1109/ROBIO.2009.4913148","DOIUrl":null,"url":null,"abstract":"This paper is concerned with distributed extended Kalman filtering (DEKF) for simultaneous pedestrian and multiple mobile robots localization. Here, extended Kalman filter (EKF) is applied to the multiple robots for the pedestrian localization. The estimate from each robot is fused by distributed algorithm to improve the accuracy. Furthermore, we used multiple robots formation control to keep a triangle formation at the same time. The focus of this paper is to investigate the effect of the proposed algorithm on simultaneous localization accuracy. A Monte Carlo simulation result is presented to demonstrate the efficiency in localization accuracy of the distributed fusion of EKFs.","PeriodicalId":321332,"journal":{"name":"2008 IEEE International Conference on Robotics and Biomimetics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Robotics and Biomimetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2009.4913148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper is concerned with distributed extended Kalman filtering (DEKF) for simultaneous pedestrian and multiple mobile robots localization. Here, extended Kalman filter (EKF) is applied to the multiple robots for the pedestrian localization. The estimate from each robot is fused by distributed algorithm to improve the accuracy. Furthermore, we used multiple robots formation control to keep a triangle formation at the same time. The focus of this paper is to investigate the effect of the proposed algorithm on simultaneous localization accuracy. A Monte Carlo simulation result is presented to demonstrate the efficiency in localization accuracy of the distributed fusion of EKFs.
基于分布式扩展卡尔曼滤波的行人和多个移动机器人同步定位
本文研究了分布式扩展卡尔曼滤波(DEKF)在行人和多个移动机器人同步定位中的应用。本文将扩展卡尔曼滤波(EKF)应用于多机器人行人定位。采用分布式算法对各机器人的估计进行融合,提高了估计精度。在此基础上,采用多机器人编队控制,同时保持三角形编队。本文的重点是研究该算法对同时定位精度的影响。通过蒙特卡罗仿真,验证了该方法在提高ekf分布融合定位精度方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信