Complete Search of Sliding Tile Puzzles on a Personal Computer [Extended Abstract]

O. Tarakanov
{"title":"Complete Search of Sliding Tile Puzzles on a Personal Computer [Extended Abstract]","authors":"O. Tarakanov","doi":"10.1609/socs.v16i1.27307","DOIUrl":null,"url":null,"abstract":"The 4x4 and 8x2 Sliding Tile Puzzles have more than ten trillion solvable states, making complete brute force search very challenging: best existing solutions take weeks to run or require expensive hardware. We propose and implement a set of optimizations of the frontier search algorithm, that are efficient on a modern personal computer. We run a number of complete searches, each taking about 3 days on our hardware, for both puzzles in single-tile and multi-tile metrics, verifying previously known results about the radiuses of the puzzles. We also discover that the diameter of the 4x4 Puzzle is 80 single-tile moves, and the radius of the 8x2 Puzzle is 57 multi-tile moves.","PeriodicalId":425645,"journal":{"name":"Symposium on Combinatorial Search","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Combinatorial Search","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/socs.v16i1.27307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The 4x4 and 8x2 Sliding Tile Puzzles have more than ten trillion solvable states, making complete brute force search very challenging: best existing solutions take weeks to run or require expensive hardware. We propose and implement a set of optimizations of the frontier search algorithm, that are efficient on a modern personal computer. We run a number of complete searches, each taking about 3 days on our hardware, for both puzzles in single-tile and multi-tile metrics, verifying previously known results about the radiuses of the puzzles. We also discover that the diameter of the 4x4 Puzzle is 80 single-tile moves, and the radius of the 8x2 Puzzle is 57 multi-tile moves.
在个人计算机上完全搜索滑动瓷砖拼图[扩展摘要]
4x4和8x2滑动瓷砖谜题有超过10万亿个可解状态,这使得完整的蛮力搜索非常具有挑战性:现有的最佳解决方案需要数周时间才能运行,或者需要昂贵的硬件。我们提出并实现了一套前沿搜索算法的优化,在现代个人计算机上是高效的。我们在硬件上运行了许多完整的搜索,每次都需要花费3天的时间,针对单个和多个参数的谜题,验证之前已知的关于谜题半径的结果。我们还发现,4x4谜题的直径是80个单格移动,而8x2谜题的半径是57个多格移动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信