Muhammad Naeem Tahir, M. Katz, Sahar Fatima, P. Leviäkangas
{"title":"V2X Wireless Communication: Simulation Platform Concept for CA (Connected and Automated) Vehicles","authors":"Muhammad Naeem Tahir, M. Katz, Sahar Fatima, P. Leviäkangas","doi":"10.4018/ijitn.302119","DOIUrl":null,"url":null,"abstract":"Assessment of automatic and connected vehicle driving tests is vital when building reliable traffic simulation platforms. The main components of a traffic simulation platform, traffic environment and vehicular models are overgeneralized in the existing traffic simulators. State-of-the-art simulators for road traffic generally make simple the functioning of connected and autonomous (CA) vehicles. It offers the additional advancements to the existing road-traffic flow modelling techniques. The traditional autonomous vehicular simulators only emphasize distinct authentication functionality in particular traffic environments, neglecting the network level assessment when incorporating both vehicle-to-everything (V2X) communication and extensive vehicular traffic networks. This article proposes a concept for a road-traffic simulation framework designed for Connected and Automated-Driving (CAD) considering cyber-physical transport system. The trio of prevalent open-source simulation platforms, SUMO, Omnet++, and Webots are attached via Traffic-Control-Interface (TRACI).","PeriodicalId":120331,"journal":{"name":"Int. J. Interdiscip. Telecommun. Netw.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Interdiscip. Telecommun. Netw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitn.302119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Assessment of automatic and connected vehicle driving tests is vital when building reliable traffic simulation platforms. The main components of a traffic simulation platform, traffic environment and vehicular models are overgeneralized in the existing traffic simulators. State-of-the-art simulators for road traffic generally make simple the functioning of connected and autonomous (CA) vehicles. It offers the additional advancements to the existing road-traffic flow modelling techniques. The traditional autonomous vehicular simulators only emphasize distinct authentication functionality in particular traffic environments, neglecting the network level assessment when incorporating both vehicle-to-everything (V2X) communication and extensive vehicular traffic networks. This article proposes a concept for a road-traffic simulation framework designed for Connected and Automated-Driving (CAD) considering cyber-physical transport system. The trio of prevalent open-source simulation platforms, SUMO, Omnet++, and Webots are attached via Traffic-Control-Interface (TRACI).