Approximate Schur complement reconditioners on serial and parallel computers

H. Elman
{"title":"Approximate Schur complement reconditioners on serial and parallel computers","authors":"H. Elman","doi":"10.1137/0910037","DOIUrl":null,"url":null,"abstract":"A class of preconditioning techniques for sparse matrices is considered, based on computing an approximation of the Schur complement of a (suitably ordered) matrix. The techniques generalize the reduced system methodology for 2-cyclic matrices to non-2-cyclic matrices, and in addition, they are well suited to parallel architectures. Their effectiveness with numerical experiments on a nine-point finite-difference operator is demonstrated, and an analysis showing that they can be implemented efficiently on multiprocessors is presented.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0910037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

A class of preconditioning techniques for sparse matrices is considered, based on computing an approximation of the Schur complement of a (suitably ordered) matrix. The techniques generalize the reduced system methodology for 2-cyclic matrices to non-2-cyclic matrices, and in addition, they are well suited to parallel architectures. Their effectiveness with numerical experiments on a nine-point finite-difference operator is demonstrated, and an analysis showing that they can be implemented efficiently on multiprocessors is presented.
串行和并行计算机上的近似舒尔补校正器
考虑了一类稀疏矩阵的预处理技术,该技术基于计算(适当有序)矩阵的舒尔补的近似值。该技术将2循环矩阵的简化系统方法推广到非2循环矩阵,此外,它们非常适合并行体系结构。在一个9点有限差分算子上的数值实验证明了它们的有效性,并分析了它们在多处理器上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信