Automobile Maintenance Case Matching Method Based on the Continuous Space Language Model

Weizhi Liao, Yanchao Yin, Guanglei Ye, Dongzhou Zuo, Qiang Zhang, Yaheng Ma
{"title":"Automobile Maintenance Case Matching Method Based on the Continuous Space Language Model","authors":"Weizhi Liao, Yanchao Yin, Guanglei Ye, Dongzhou Zuo, Qiang Zhang, Yaheng Ma","doi":"10.1109/ICEMME49371.2019.00100","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for automobile maintenance case extraction based on a continuous language model to improve the context understanding accuracy and reduce the result redundancy of the traditional keyword matching technology in the car maintenance case diagnosis process. First, the SimHash algorithm is used to find the candidate case diagnosis result sets. Then, a deep learning technology word embedding is used to create a distributive map of the keywords and the candidate case sets and queries. Finally, a continuous space language model-based inference algorithm is developed to produce more accurate matching results between the keywords and the candidate case sets. Experiments carried out on vehicle maintenance case data prove that the continuous language model can effectively improve the case matching accuracy.","PeriodicalId":122910,"journal":{"name":"2019 International Conference on Economic Management and Model Engineering (ICEMME)","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Economic Management and Model Engineering (ICEMME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMME49371.2019.00100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a method for automobile maintenance case extraction based on a continuous language model to improve the context understanding accuracy and reduce the result redundancy of the traditional keyword matching technology in the car maintenance case diagnosis process. First, the SimHash algorithm is used to find the candidate case diagnosis result sets. Then, a deep learning technology word embedding is used to create a distributive map of the keywords and the candidate case sets and queries. Finally, a continuous space language model-based inference algorithm is developed to produce more accurate matching results between the keywords and the candidate case sets. Experiments carried out on vehicle maintenance case data prove that the continuous language model can effectively improve the case matching accuracy.
基于连续空间语言模型的汽车维修案例匹配方法
本文提出了一种基于连续语言模型的汽车维修案例提取方法,以提高汽车维修案例诊断过程中传统关键字匹配技术的上下文理解精度和减少结果冗余。首先,使用SimHash算法查找候选病例诊断结果集。然后,使用深度学习技术词嵌入来创建关键字和候选案例集和查询的分布图。最后,提出了一种基于连续空间语言模型的推理算法,使关键词与候选用例集之间的匹配结果更加精确。对汽车维修案例数据进行的实验表明,连续语言模型可以有效地提高案例匹配精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信