FPGA Implementation of Artificial Neural Network (ANN) for ECG Signal Classification

Shatharajupally Vinaykumar, T. R
{"title":"FPGA Implementation of Artificial Neural Network (ANN) for ECG Signal Classification","authors":"Shatharajupally Vinaykumar, T. R","doi":"10.1109/iemtronics55184.2022.9795755","DOIUrl":null,"url":null,"abstract":"The heart is one of the crucial parts of the human being. The graphical recording of the cardiac cycle produced by an Electrocardiograph is called an Electrocardiogram (ECG) signal. To predict the occurrence of an arrhythmia, an electrocardiogram (ECG) is generally used by doctors to identify the condition of the patient. Hence, to accurately detect the abnormalities of the heart in advance and classify those diseases without human involvement many machine learning algorithms are used. The MIT-BIH Arrhythmia database is being used to classify the beat classification performance. This paper presents the hardware implementation of a classifier using an Artificial Neural Network (ANN) to classify four abnormalities (Normal beat, Supraventricular ectopic beat, Ventricular ectopic beat, Fusion beat) of heartbeat with high accuracy. To an appropriate input vector for the classifier, several preprocessing stages have been applied. Discrete Wavelet Transform (DWT) is used to extract the features from the ECG signal. To implement this work, Xilinx Artix-7 NESYS 4 DDR FPGA board is used. This model got 86% testing accuracy in simulation and 85.6% in hardware.","PeriodicalId":442879,"journal":{"name":"2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iemtronics55184.2022.9795755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The heart is one of the crucial parts of the human being. The graphical recording of the cardiac cycle produced by an Electrocardiograph is called an Electrocardiogram (ECG) signal. To predict the occurrence of an arrhythmia, an electrocardiogram (ECG) is generally used by doctors to identify the condition of the patient. Hence, to accurately detect the abnormalities of the heart in advance and classify those diseases without human involvement many machine learning algorithms are used. The MIT-BIH Arrhythmia database is being used to classify the beat classification performance. This paper presents the hardware implementation of a classifier using an Artificial Neural Network (ANN) to classify four abnormalities (Normal beat, Supraventricular ectopic beat, Ventricular ectopic beat, Fusion beat) of heartbeat with high accuracy. To an appropriate input vector for the classifier, several preprocessing stages have been applied. Discrete Wavelet Transform (DWT) is used to extract the features from the ECG signal. To implement this work, Xilinx Artix-7 NESYS 4 DDR FPGA board is used. This model got 86% testing accuracy in simulation and 85.6% in hardware.
心电信号分类的人工神经网络FPGA实现
心脏是人类最重要的部分之一。由心电图仪产生的心电周期的图形记录称为心电图信号。为了预测心律失常的发生,医生通常使用心电图(ECG)来确定患者的状况。因此,为了提前准确检测心脏异常并在没有人类参与的情况下对这些疾病进行分类,使用了许多机器学习算法。MIT-BIH心律失常数据库被用于对心跳分类性能进行分类。本文介绍了一种基于人工神经网络(ANN)的分类器的硬件实现,该分类器对心跳的四种异常(正常心跳、室上异位心跳、室外异位心跳、融合心跳)进行了高精度的分类。为了得到一个合适的分类器输入向量,应用了几个预处理阶段。采用离散小波变换(DWT)对心电信号进行特征提取。为了实现这项工作,使用了Xilinx Artix-7 NESYS 4 DDR FPGA板。该模型的仿真测试精度为86%,硬件测试精度为85.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信