A Sentiment Classification in Bengali and Machine Translated English Corpus

Salim Sazzed, S. Jayarathna
{"title":"A Sentiment Classification in Bengali and Machine Translated English Corpus","authors":"Salim Sazzed, S. Jayarathna","doi":"10.1109/IRI.2019.00029","DOIUrl":null,"url":null,"abstract":"The resource constraints in many languages have made the multi-lingual sentiment analysis approach a viable alternative for sentiment classification. Although a good amount of research has been conducted using a multi-lingual approach in languages like Chinese, Italian, Romanian, etc. very limited research has been done in Bengali. This paper presents a bilingual approach to sentiment analysis by comparing machine translated Bengali corpus to its original form. We apply multiple machine learning algorithms: Logistic Regression (LR), Ridge Regression (RR), Support Vector Machine (SVM), Random Forest (RF), Extra Randomized Trees (ET) and Long Short-Term Memory (LSTM) to a collection of Bengali corpus and corresponding machine translated English version. The results suggest that using machine translation improves classifiers performance in both datasets. Moreover, the results show that the unigram model performs better than higher-order n-gram model in both datasets due to linguistic variations and presence of misspelled words results from complex typing system of Bengali language; sparseness and noise in the machine translated data, and because of small datasets.","PeriodicalId":295028,"journal":{"name":"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2019.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

The resource constraints in many languages have made the multi-lingual sentiment analysis approach a viable alternative for sentiment classification. Although a good amount of research has been conducted using a multi-lingual approach in languages like Chinese, Italian, Romanian, etc. very limited research has been done in Bengali. This paper presents a bilingual approach to sentiment analysis by comparing machine translated Bengali corpus to its original form. We apply multiple machine learning algorithms: Logistic Regression (LR), Ridge Regression (RR), Support Vector Machine (SVM), Random Forest (RF), Extra Randomized Trees (ET) and Long Short-Term Memory (LSTM) to a collection of Bengali corpus and corresponding machine translated English version. The results suggest that using machine translation improves classifiers performance in both datasets. Moreover, the results show that the unigram model performs better than higher-order n-gram model in both datasets due to linguistic variations and presence of misspelled words results from complex typing system of Bengali language; sparseness and noise in the machine translated data, and because of small datasets.
孟加拉语和机器翻译英语语料库中的情感分类
多种语言的资源约束使得多语言情感分析方法成为一种可行的情感分类方法。尽管使用多语言方法进行了大量的研究,如中文,意大利语,罗马尼亚语等,但对孟加拉语的研究非常有限。本文通过对比机器翻译的孟加拉语语料库和原始语料库,提出了一种双语情感分析方法。我们将多种机器学习算法:逻辑回归(LR),岭回归(RR),支持向量机(SVM),随机森林(RF),额外随机树(ET)和长短期记忆(LSTM)应用于孟加拉语语料库集合和相应的机器翻译英语版本。结果表明,使用机器翻译提高了分类器在两个数据集上的性能。此外,研究结果表明,由于语言差异和孟加拉语复杂类型系统中存在的拼错结果,一元图模型在两个数据集上的表现都优于高阶n-图模型;机器翻译数据的稀疏性和噪声,以及由于数据集小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信