Image Registration Using Ant Colony and Particle Swarm Hybrid Algorithm Based on Wavelet Transform

Aiye Shi, Fengchen Huang, Yang Pan, Lizhong Xu
{"title":"Image Registration Using Ant Colony and Particle Swarm Hybrid Algorithm Based on Wavelet Transform","authors":"Aiye Shi, Fengchen Huang, Yang Pan, Lizhong Xu","doi":"10.1109/ICMV.2009.11","DOIUrl":null,"url":null,"abstract":"Mutual information based image registration has the advantages of high precision and strong robustness. However, the solution of this registration method is easy to fall into the local extremes. To overcome this problem, in this paper we propose a new optimal algorithm for image registration, which combines ant colony algorithm with particle swarm algorithm based on wavelet transform. Experiment results demonstrate our proposed approach effective.","PeriodicalId":315778,"journal":{"name":"2009 Second International Conference on Machine Vision","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Conference on Machine Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMV.2009.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Mutual information based image registration has the advantages of high precision and strong robustness. However, the solution of this registration method is easy to fall into the local extremes. To overcome this problem, in this paper we propose a new optimal algorithm for image registration, which combines ant colony algorithm with particle swarm algorithm based on wavelet transform. Experiment results demonstrate our proposed approach effective.
基于小波变换的蚁群与粒子群混合算法图像配准
基于互信息的图像配准具有精度高、鲁棒性强的优点。然而,这种配准方法的解容易陷入局部极值。为了克服这一问题,本文提出了一种新的图像配准优化算法,该算法将蚁群算法与基于小波变换的粒子群算法相结合。实验结果表明该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信