Superslicing frame restoration for anisotropic sstem

D. Laptev, A. Veznevets, J. Buhmann
{"title":"Superslicing frame restoration for anisotropic sstem","authors":"D. Laptev, A. Veznevets, J. Buhmann","doi":"10.1109/ISBI.2014.6868090","DOIUrl":null,"url":null,"abstract":"In biological imaging the data is often represented by a sequence of anisotropic frames - the resolution in one dimension is significantly lower than in the other dimensions. E.g. in electron microscopy it arises from the thickness of a scanned section. This leads to blurred images and raises problems in tasks like neuronal image segmentation. We present an approach called SuperSlicing to decompose the observed frame into a sequence of plausible hidden sub-frames. Based on sub-frame decomposition by SuperSlicing we propose a novel automated method to perform neuronal structure segmentation. We test our approach on a popular benchmark, where SuperSlicing preserves topological structures significantly better than other algorithms.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6868090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In biological imaging the data is often represented by a sequence of anisotropic frames - the resolution in one dimension is significantly lower than in the other dimensions. E.g. in electron microscopy it arises from the thickness of a scanned section. This leads to blurred images and raises problems in tasks like neuronal image segmentation. We present an approach called SuperSlicing to decompose the observed frame into a sequence of plausible hidden sub-frames. Based on sub-frame decomposition by SuperSlicing we propose a novel automated method to perform neuronal structure segmentation. We test our approach on a popular benchmark, where SuperSlicing preserves topological structures significantly better than other algorithms.
各向异性系统的超拼接帧恢复
在生物成像中,数据通常由各向异性帧序列表示——一个维度的分辨率明显低于其他维度。例如,在电子显微镜中,它来自于扫描切片的厚度。这会导致图像模糊,并在神经元图像分割等任务中提出问题。我们提出了一种称为SuperSlicing的方法,将观察到的帧分解为一系列可信的隐藏子帧。本文提出了一种基于超拼接的子帧分解的神经结构自动分割方法。我们在一个流行的基准测试上测试了我们的方法,其中SuperSlicing比其他算法更好地保留了拓扑结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信