{"title":"Effect of different light on wheat (Triticum aestivum L) growth and role of phytochrome","authors":"K. Iqbal","doi":"10.31579/2766-2314/001","DOIUrl":null,"url":null,"abstract":"Among the various naturally occurring abiotic factors regulating plant development, different types of light play an important role in them. Photosynthesis, photoperiodism, and photo morphogenesis. In this trial the effects of different colors of light on (seed) germination, phytochrome conversion, length of seedling, biomass production in wheat varieties Shalkot and Tandojam. The rate of germination data indicates white 96%, Red 100%, far-red 95%, Blue 95%, and dark 64%, in Shalkot. In Tandojam rate of germination 94% White, 93% red, 82% far red, 92% blue, and 50% dark, were observed. Root and shoot length were higher in Shalkot under white light. Difference between dry and fresh weight in Shalkot under white, red, far-red, blue, dark, 1.66g, 0.94g, 0.98g, 0.97g, 0.6g, respectively. In Tandojam difference between dry and fresh weight observed under white, red, far-red, blue, dark, 1.48g, 0.92g, 0.70g, 0.97g, 0.4g respectively. By using bioinformatics tools identified some light-harvesting genes in wheat (Triticum aestivum) by using model plant Arabidopsis thaliana. The identified light-harvesting genes include cl02879, cl25816, cl33336, cl31857, cl28913.","PeriodicalId":220919,"journal":{"name":"Biotechnology and Bioprocessing","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioprocessing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31579/2766-2314/001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Among the various naturally occurring abiotic factors regulating plant development, different types of light play an important role in them. Photosynthesis, photoperiodism, and photo morphogenesis. In this trial the effects of different colors of light on (seed) germination, phytochrome conversion, length of seedling, biomass production in wheat varieties Shalkot and Tandojam. The rate of germination data indicates white 96%, Red 100%, far-red 95%, Blue 95%, and dark 64%, in Shalkot. In Tandojam rate of germination 94% White, 93% red, 82% far red, 92% blue, and 50% dark, were observed. Root and shoot length were higher in Shalkot under white light. Difference between dry and fresh weight in Shalkot under white, red, far-red, blue, dark, 1.66g, 0.94g, 0.98g, 0.97g, 0.6g, respectively. In Tandojam difference between dry and fresh weight observed under white, red, far-red, blue, dark, 1.48g, 0.92g, 0.70g, 0.97g, 0.4g respectively. By using bioinformatics tools identified some light-harvesting genes in wheat (Triticum aestivum) by using model plant Arabidopsis thaliana. The identified light-harvesting genes include cl02879, cl25816, cl33336, cl31857, cl28913.