Impact of boron penetration from S/D-extension on gate-oxide reliability for 65-nm node CMOS and beyond

T. Yamashita, K. Ota, K. Shiga, T. Hayashi, H. Umeda, H. Oda, T. Eimori, M. Inuishi, Y. Ohji, K. Eriguchi, K. Nakanishi, H. Nakaoka, T. Yamada, M. Nakamura, I. Miyanaga, A. Kajiya, M. Kubota, M. Ogura
{"title":"Impact of boron penetration from S/D-extension on gate-oxide reliability for 65-nm node CMOS and beyond","authors":"T. Yamashita, K. Ota, K. Shiga, T. Hayashi, H. Umeda, H. Oda, T. Eimori, M. Inuishi, Y. Ohji, K. Eriguchi, K. Nakanishi, H. Nakaoka, T. Yamada, M. Nakamura, I. Miyanaga, A. Kajiya, M. Kubota, M. Ogura","doi":"10.1109/VLSIT.2004.1345438","DOIUrl":null,"url":null,"abstract":"Nitridation technique of the gate-oxide top surface has been much studied to suppress the boron penetration from the doped gate poly-silicon and proved to be efficient against NBTI degradation. However there is another path for boron to penetrate to gate-oxide from the substrate, where this technique is helpless. We found that boron penetration from the S/D-extension becomes crucial issue on gate leakage and gate-oxide integrity especially for deep sub-micron pMOS, where stress from the sidewall and interlayer dielectrics accelerates to deteriorate those gate-oxide characteristics. We demonstrate that nitridation after gate etching is very efficient to control this new degradation mode. We also propose the totally-optimized transistor structure for nMOS and pMOS, which shows sufficient electrical property and reliability for low operational power (LOP) and low standby power (LSTP) of 65-nm node and beyond.","PeriodicalId":297052,"journal":{"name":"Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004.","volume":"9 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2004.1345438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Nitridation technique of the gate-oxide top surface has been much studied to suppress the boron penetration from the doped gate poly-silicon and proved to be efficient against NBTI degradation. However there is another path for boron to penetrate to gate-oxide from the substrate, where this technique is helpless. We found that boron penetration from the S/D-extension becomes crucial issue on gate leakage and gate-oxide integrity especially for deep sub-micron pMOS, where stress from the sidewall and interlayer dielectrics accelerates to deteriorate those gate-oxide characteristics. We demonstrate that nitridation after gate etching is very efficient to control this new degradation mode. We also propose the totally-optimized transistor structure for nMOS and pMOS, which shows sufficient electrical property and reliability for low operational power (LOP) and low standby power (LSTP) of 65-nm node and beyond.
S/ d扩展中硼渗透对65纳米及以上节点CMOS栅极氧化物可靠性的影响
对栅极-氧化物顶表面的氮化技术进行了大量的研究,以抑制掺杂栅极多晶硅中硼的渗透,并证明了氮化技术对NBTI的降解是有效的。然而,还有另一种途径可以使硼从衬底渗透到栅极氧化物中,而这种技术在这方面是无能为力的。我们发现,S/ d延伸过程中的硼渗透是影响栅极泄漏和栅极氧化物完整性的关键问题,特别是对于深亚微米pMOS,来自侧壁和层间介电体的应力加速了栅极氧化物特性的恶化。我们证明了栅极蚀刻后的氮化是非常有效的控制这种新的降解模式。我们还提出了用于nMOS和pMOS的完全优化的晶体管结构,该结构在65纳米及以上节点的低工作功率(LOP)和低待机功率(LSTP)下具有足够的电学性能和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信