Review of wide bandgap materials and their impact in new power devices

David Garrido-Diez, I. Baraia
{"title":"Review of wide bandgap materials and their impact in new power devices","authors":"David Garrido-Diez, I. Baraia","doi":"10.1109/ECMSM.2017.7945876","DOIUrl":null,"url":null,"abstract":"Power electronic converters use semiconductors to satisfy the needs of different applications. Nowadays, these semiconductors are mainly based on Silicon (Si), which can be processed virtually without defects. However, the limits of Si are being reached and in consequence, Si based semiconductors have limited voltage blocking capability, limited heat transfer capability, limited efficiency and maximum junction temperature. In recent years, power semiconductor devices have been built with wide-bandgap materials such as Silicon Carbide (SiC) and Gallium Nitride (GaN). The use of these materials promises to surpass the limits imposed by Si. More compact and efficient devices can be fabricated with these materials. However, in order to exploit the benefits of these devices, is necessary to know all the implications that the adoption of these new components has in the converter. This paper provides a review of current SiC and GaN materials and devices comparing their benefits and drawbacks for real power applications.","PeriodicalId":358140,"journal":{"name":"2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMSM.2017.7945876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Power electronic converters use semiconductors to satisfy the needs of different applications. Nowadays, these semiconductors are mainly based on Silicon (Si), which can be processed virtually without defects. However, the limits of Si are being reached and in consequence, Si based semiconductors have limited voltage blocking capability, limited heat transfer capability, limited efficiency and maximum junction temperature. In recent years, power semiconductor devices have been built with wide-bandgap materials such as Silicon Carbide (SiC) and Gallium Nitride (GaN). The use of these materials promises to surpass the limits imposed by Si. More compact and efficient devices can be fabricated with these materials. However, in order to exploit the benefits of these devices, is necessary to know all the implications that the adoption of these new components has in the converter. This paper provides a review of current SiC and GaN materials and devices comparing their benefits and drawbacks for real power applications.
宽禁带材料及其在新型功率器件中的影响综述
电力电子变换器采用半导体来满足不同应用的需要。目前,这些半导体主要是基于硅(Si),它可以加工几乎没有缺陷。然而,硅的极限已经达到,因此,硅基半导体具有有限的电压阻塞能力,有限的传热能力,有限的效率和最大结温。近年来,功率半导体器件已采用碳化硅(SiC)和氮化镓(GaN)等宽带隙材料制造。这些材料的使用有望超越硅所施加的限制。用这些材料可以制造更紧凑、更高效的设备。然而,为了利用这些设备的好处,有必要知道所有的影响,采用这些新组件在转换器。本文综述了目前的SiC和GaN材料和器件,比较了它们在实际功率应用中的优点和缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信