CbPIS: Cyberbullying Profile Identification System with Users in Loop

Monika Choudhary, S. Chouhan, E. Pilli
{"title":"CbPIS: Cyberbullying Profile Identification System with Users in Loop","authors":"Monika Choudhary, S. Chouhan, E. Pilli","doi":"10.1145/3474124.3474153","DOIUrl":null,"url":null,"abstract":"The internet has given us access to vast amounts of information and enabled us to communicate globally. However, posting uncensored comments on internet has raised several concerns. Cyberbullying, provoking and pestering are some of the growing issues on social media. People try to belittle others on public forums for fun. There is no suitable and scalable way to establish the authenticity and reliability of information and users. In this paper, we propose Cyberbullying Profile Identification System (CbPIS), to identify bullying profile involved in cyberbullying. In the proposed work, we first evaluate and compare existing state-of-the-art machine learning and deep learning techniques, then select the suitable technique for the system development. Moreover, CbPIS takes Users’ feedback for validation purpose and based on the feedback, if needed, CbPIS retrains itself to improve the predictions. Experimental results show that CbPIS with user feedback gives effective results.","PeriodicalId":144611,"journal":{"name":"2021 Thirteenth International Conference on Contemporary Computing (IC3-2021)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Thirteenth International Conference on Contemporary Computing (IC3-2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474124.3474153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The internet has given us access to vast amounts of information and enabled us to communicate globally. However, posting uncensored comments on internet has raised several concerns. Cyberbullying, provoking and pestering are some of the growing issues on social media. People try to belittle others on public forums for fun. There is no suitable and scalable way to establish the authenticity and reliability of information and users. In this paper, we propose Cyberbullying Profile Identification System (CbPIS), to identify bullying profile involved in cyberbullying. In the proposed work, we first evaluate and compare existing state-of-the-art machine learning and deep learning techniques, then select the suitable technique for the system development. Moreover, CbPIS takes Users’ feedback for validation purpose and based on the feedback, if needed, CbPIS retrains itself to improve the predictions. Experimental results show that CbPIS with user feedback gives effective results.
基于用户循环的网络欺凌档案识别系统
互联网使我们获得了大量的信息,使我们能够在全球范围内进行交流。然而,在互联网上发表未经审查的评论引发了一些担忧。网络欺凌、挑衅和纠缠是社交媒体上日益严重的一些问题。人们试图在公共论坛上贬低他人以取乐。没有合适的和可扩展的方法来建立信息和用户的真实性和可靠性。在本文中,我们提出了网络欺凌档案识别系统(CbPIS)来识别涉及网络欺凌的欺凌档案。在提出的工作中,我们首先评估和比较现有的最先进的机器学习和深度学习技术,然后选择适合系统开发的技术。此外,CbPIS将用户的反馈用于验证目的,并根据反馈,如果需要,CbPIS重新训练自己以改进预测。实验结果表明,结合用户反馈的CbPIS算法效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信