Local rotation forest of decision stumps for regression problems

S. Kotsiantis, P. Pintelas
{"title":"Local rotation forest of decision stumps for regression problems","authors":"S. Kotsiantis, P. Pintelas","doi":"10.1109/ICCSIT.2009.5234453","DOIUrl":null,"url":null,"abstract":"Parametric models such as linear regression can contribute valuable, interpretable descriptions of simple structure in data. However, occasionally such simple structure does not extend across an entire database and might be confined more locally within subsets of the data. Nonparametric regression normally involves local averaging. In this study, local averaging estimator is coupled with a machine learning technique - Rotation Forest. In more detail, we propose a technique of local rotation forest of decision stumps. We performed a comparison with other well known methods and ensembles, on standard benchmark datasets and the performance of the proposed technique was greater in most cases.","PeriodicalId":342396,"journal":{"name":"2009 2nd IEEE International Conference on Computer Science and Information Technology","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd IEEE International Conference on Computer Science and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSIT.2009.5234453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Parametric models such as linear regression can contribute valuable, interpretable descriptions of simple structure in data. However, occasionally such simple structure does not extend across an entire database and might be confined more locally within subsets of the data. Nonparametric regression normally involves local averaging. In this study, local averaging estimator is coupled with a machine learning technique - Rotation Forest. In more detail, we propose a technique of local rotation forest of decision stumps. We performed a comparison with other well known methods and ensembles, on standard benchmark datasets and the performance of the proposed technique was greater in most cases.
回归问题的决策树桩局部旋转林
参数模型如线性回归可以对数据中的简单结构提供有价值的、可解释的描述。但是,有时这种简单的结构不能扩展到整个数据库,而可能更局限于数据子集的局部。非参数回归通常涉及局部平均。在本研究中,局部平均估计器与机器学习技术-旋转森林相结合。在此基础上,提出了一种决策树桩局部轮换林技术。我们在标准基准数据集上与其他知名方法和集成进行了比较,在大多数情况下,所提出的技术的性能更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信