Prediction based DC servo control system in robotic arm

H. Hashimoto, O. Kaynak, H. Kuroyanagi, Y. Deguchi, F. Harashima
{"title":"Prediction based DC servo control system in robotic arm","authors":"H. Hashimoto, O. Kaynak, H. Kuroyanagi, Y. Deguchi, F. Harashima","doi":"10.1109/IECON.1990.149154","DOIUrl":null,"url":null,"abstract":"Two approaches to the accurate trajectory control of a robotic arm with payload are presented. One is the fixed parameter algorithm and the other is the self-tuning algorithm. Both methods use an ARMA (autoregressive moving average) process model. In the first method the model is fixed and in the second the model parameters are tuned online. These techniques are based on long-range position prediction and can easily be implemented in real-time systems because of their simplicity. Simulation results of a one-degree-of-freedom DC motor servo system indicate that these algorithms, especially the self-tuning one, are effective for position control of a robotic arm.<<ETX>>","PeriodicalId":253424,"journal":{"name":"[Proceedings] IECON '90: 16th Annual Conference of IEEE Industrial Electronics Society","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] IECON '90: 16th Annual Conference of IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.1990.149154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Two approaches to the accurate trajectory control of a robotic arm with payload are presented. One is the fixed parameter algorithm and the other is the self-tuning algorithm. Both methods use an ARMA (autoregressive moving average) process model. In the first method the model is fixed and in the second the model parameters are tuned online. These techniques are based on long-range position prediction and can easily be implemented in real-time systems because of their simplicity. Simulation results of a one-degree-of-freedom DC motor servo system indicate that these algorithms, especially the self-tuning one, are effective for position control of a robotic arm.<>
基于预测的机械臂直流伺服控制系统
提出了带载荷机械臂精确轨迹控制的两种方法。一种是固定参数算法,另一种是自整定算法。两种方法都使用自回归移动平均过程模型。在第一种方法中,模型是固定的,在第二种方法中,模型参数是在线调整的。这些技术基于远程位置预测,由于其简单性,可以很容易地在实时系统中实现。一自由度直流电机伺服系统的仿真结果表明,这些算法特别是自整定算法对机械臂的位置控制是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信