Probabilistic Enhanced Mapping with the Generative Tabular Model

R. Priam, M. Nadif
{"title":"Probabilistic Enhanced Mapping with the Generative Tabular Model","authors":"R. Priam, M. Nadif","doi":"10.1109/ICDM.2006.128","DOIUrl":null,"url":null,"abstract":"Visualization of the massive datasets needs new methods which are able to quickly and easily reveal their contents. The projection of the data cloud is an interesting paradigm in spite of its difficulty to be explored when data plots are too numerous. So we study a new way to show a bidimensional projection from a multidimensional data cloud: our generative model constructs a tabular view of the projected cloud. We are able to show the high densities areas by their non equidistributed discretization. This approach is an alternative to the self-organizing map when a projection does already exist. The resulting pixel views of a dataset are illustrated by projecting a data sample of real images: it becomes possible to observe how are laid out the class labels or the frequencies of a group of modalities without being lost because of a zoom enlarging change for instance. The conclusion gives perspectives to this original promising point of view to get a readable projection for a statistical data analysis of large data samples.","PeriodicalId":356443,"journal":{"name":"Sixth International Conference on Data Mining (ICDM'06)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Data Mining (ICDM'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2006.128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visualization of the massive datasets needs new methods which are able to quickly and easily reveal their contents. The projection of the data cloud is an interesting paradigm in spite of its difficulty to be explored when data plots are too numerous. So we study a new way to show a bidimensional projection from a multidimensional data cloud: our generative model constructs a tabular view of the projected cloud. We are able to show the high densities areas by their non equidistributed discretization. This approach is an alternative to the self-organizing map when a projection does already exist. The resulting pixel views of a dataset are illustrated by projecting a data sample of real images: it becomes possible to observe how are laid out the class labels or the frequencies of a group of modalities without being lost because of a zoom enlarging change for instance. The conclusion gives perspectives to this original promising point of view to get a readable projection for a statistical data analysis of large data samples.
基于生成表格模型的概率增强映射
海量数据集的可视化需要能够快速方便地显示其内容的新方法。数据云的投影是一个有趣的范例,尽管它在数据图太多时难以探索。因此,我们研究了一种从多维数据云中显示二维投影的新方法:我们的生成模型构建了投影云的表格视图。我们可以通过高密度区域的非等分布离散化来表示高密度区域。当投影已经存在时,这种方法是自组织映射的替代方法。通过投影真实图像的数据样本来说明数据集的最终像素视图:例如,可以观察如何布局类标签或一组模态的频率,而不会因为缩放变化而丢失。结论为这一最初的有希望的观点提供了视角,以获得可读的投影,用于大数据样本的统计数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信