Development of driver-state estimation algorithm based on Hybrid Bayesian Network

Dong Woon Ryu, Hyeon Bin Jeong, Sang Hun Lee, Woon-Sung Lee, J. H. Yang
{"title":"Development of driver-state estimation algorithm based on Hybrid Bayesian Network","authors":"Dong Woon Ryu, Hyeon Bin Jeong, Sang Hun Lee, Woon-Sung Lee, J. H. Yang","doi":"10.1109/IVS.2015.7225873","DOIUrl":null,"url":null,"abstract":"In this study, we develop and evaluate an estimation algorithm of abnormal driving states (drowsiness, distraction, and workload) based on a Hybrid Bayesian Network (HBN) using multimodal information. The HBN algorithm is expected to increase transportation safety by combining merits of both the Bayesian Network and clustering algorithm. In addition, multimodal data efficacy analysis through human-in-the-loop experiments is used to enhance the performance of the driver-state estimation algorithm. Performance results obtained the lowest false alarm rate and fastest calculation speed. The false alarm rate decreased from 18.2 to 15.5%, whereas the calculation speed decreased by 4.35%.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this study, we develop and evaluate an estimation algorithm of abnormal driving states (drowsiness, distraction, and workload) based on a Hybrid Bayesian Network (HBN) using multimodal information. The HBN algorithm is expected to increase transportation safety by combining merits of both the Bayesian Network and clustering algorithm. In addition, multimodal data efficacy analysis through human-in-the-loop experiments is used to enhance the performance of the driver-state estimation algorithm. Performance results obtained the lowest false alarm rate and fastest calculation speed. The false alarm rate decreased from 18.2 to 15.5%, whereas the calculation speed decreased by 4.35%.
基于混合贝叶斯网络的驾驶员状态估计算法研究
在这项研究中,我们开发并评估了一种基于混合贝叶斯网络(HBN)的基于多模态信息的异常驾驶状态(嗜睡、分心和工作负载)的估计算法。HBN算法结合贝叶斯网络和聚类算法的优点,有望提高运输安全性。此外,通过人在环实验进行多模态数据有效性分析,提高了驾驶员状态估计算法的性能。性能结果获得了最低的虚警率和最快的计算速度。虚警率由18.2%下降到15.5%,计算速度下降4.35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信