Aggregated self-similar wireless traffic properties analyses based on Sup-FRPP model

Qin Yu, Y. Mao
{"title":"Aggregated self-similar wireless traffic properties analyses based on Sup-FRPP model","authors":"Qin Yu, Y. Mao","doi":"10.1109/ICCCAS.2007.6250719","DOIUrl":null,"url":null,"abstract":"In this paper, superposition fractal renewal point process (Sup-FRPP) is applied to analyze the average arrival rate, Hurst parameter and the fractality start-time of the aggregated self-similar traffic. Simulation results demonstrate that the aggregated multiple self-similar traffic streams also exhibits self-similarity, which actually intensifies rather than diminishes burstiness of single self-similar traffic stream. The burstiness can have detrimental effects on the network performance. Thus these results are very useful for forecasting network traffic variation, optimizing bandwidth allocation and guaranteeing network quality of service (QoS).","PeriodicalId":218351,"journal":{"name":"2007 International Conference on Communications, Circuits and Systems","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Communications, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCAS.2007.6250719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, superposition fractal renewal point process (Sup-FRPP) is applied to analyze the average arrival rate, Hurst parameter and the fractality start-time of the aggregated self-similar traffic. Simulation results demonstrate that the aggregated multiple self-similar traffic streams also exhibits self-similarity, which actually intensifies rather than diminishes burstiness of single self-similar traffic stream. The burstiness can have detrimental effects on the network performance. Thus these results are very useful for forecasting network traffic variation, optimizing bandwidth allocation and guaranteeing network quality of service (QoS).
基于Sup-FRPP模型的聚合自相似无线业务特性分析
本文采用叠加分形更新点过程(supp - frpp)对聚合自相似流量的平均到达率、Hurst参数和分形开始时间进行了分析。仿真结果表明,聚合后的多个自相似流也表现出自相似,这实际上增强了而不是减弱了单个自相似流的突发性。突发会对网络性能产生不利影响。因此,这些结果对于预测网络流量变化、优化带宽分配和保证网络服务质量(QoS)具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信