An NCM-based Bayesian algorithm for hyperspectral unmixing

O. Eches, N. Dobigeon, J. Tourneret
{"title":"An NCM-based Bayesian algorithm for hyperspectral unmixing","authors":"O. Eches, N. Dobigeon, J. Tourneret","doi":"10.1109/WHISPERS.2009.5289102","DOIUrl":null,"url":null,"abstract":"This paper studies a new Bayesian algorithm to unmix hyperspectral images. The algorithm is based on the recent normal compositional model introduced by Eismann. Contrary to the standard linear mixing model, the endmember spectra are assumed to be random signatures with know mean vectors. Appropriate prior distributions are assigned to the abundance coefficients to ensure the usual positivity and sum-to-one constraints. However, the resulting posterior distribution is too complex to obtain a closed form expression for the Bayesian estimators. A Markov chain Monte Carlo algorithm is then proposed to generate samples distributed according to the full posterior distribution. These samples are used to estimate the unknown model parameters. Several simulations are conducted on synthetic and real data to illustrate the performance of the proposed method.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5289102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper studies a new Bayesian algorithm to unmix hyperspectral images. The algorithm is based on the recent normal compositional model introduced by Eismann. Contrary to the standard linear mixing model, the endmember spectra are assumed to be random signatures with know mean vectors. Appropriate prior distributions are assigned to the abundance coefficients to ensure the usual positivity and sum-to-one constraints. However, the resulting posterior distribution is too complex to obtain a closed form expression for the Bayesian estimators. A Markov chain Monte Carlo algorithm is then proposed to generate samples distributed according to the full posterior distribution. These samples are used to estimate the unknown model parameters. Several simulations are conducted on synthetic and real data to illustrate the performance of the proposed method.
基于ncm的高光谱解混贝叶斯算法
本文研究了一种新的贝叶斯算法来解混高光谱图像。该算法基于Eismann最近引入的标准成分模型。与标准的线性混合模型相反,假设端元光谱是具有已知平均向量的随机特征。为丰度系数分配适当的先验分布,以确保通常的正性和和一约束。然而,得到的后验分布过于复杂,无法得到贝叶斯估计量的封闭形式表达式。然后提出了一种马尔可夫链蒙特卡罗算法来生成符合完全后验分布的样本。这些样本被用来估计未知的模型参数。通过仿真和实际数据验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信