Acetamiprid Resistance in the Green Peach Aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae): Selection, Cross-Resistance, Biochemical and Molecular Resistance Mechanisms
Gizem Berber, Berke Demirci, U. Toprak, Emre İnak, S. Yorulmaz
{"title":"Acetamiprid Resistance in the Green Peach Aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae): Selection, Cross-Resistance, Biochemical and Molecular Resistance Mechanisms","authors":"Gizem Berber, Berke Demirci, U. Toprak, Emre İnak, S. Yorulmaz","doi":"10.55507/gopzfd.1144369","DOIUrl":null,"url":null,"abstract":"Myzus persicae (Sulzer) (Hemiptera: Aphididae) is a polyphagous pest that causes significant losses in many crops. In the present study, the biochemical and molecular mechanism of acetamiprid resistance in a laboratory-selected Myzus persicae population of which the resistance ratios reached 57.5-fold were investigated. This study was conducted in the Isparta University of Applied Sciences, Agriculture Faculty, Department of Plant Protection in 2018 and 2020. Synergism, biochemical and molecular assays showed the absence of increased P450 activity in selected population. In addition, no point mutation in nicotinic acetylcholine receptor (nAChR), the target-site of neonicotinoids including acetamiprid, was detected in the selected population. These results suggests that high level of acetamiprid resistance might be developed via the mechanisms other than well-known mechanisms, such as increased P450 activity and target-site mutations. The population selected with acetamiprid showed decreased susceptibility to imidacloprid, sulfaxaflor, beta-cyfluthrin, and tau-fluvanite ranging from 1.54 to 4.76. Nonetheless, more studies are needed to support cross-resistance by Myzus persicae populations having different genetic backgrounds.","PeriodicalId":413905,"journal":{"name":"Journal of Agricultural Faculty of Gaziosmanpasa University","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Faculty of Gaziosmanpasa University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55507/gopzfd.1144369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Myzus persicae (Sulzer) (Hemiptera: Aphididae) is a polyphagous pest that causes significant losses in many crops. In the present study, the biochemical and molecular mechanism of acetamiprid resistance in a laboratory-selected Myzus persicae population of which the resistance ratios reached 57.5-fold were investigated. This study was conducted in the Isparta University of Applied Sciences, Agriculture Faculty, Department of Plant Protection in 2018 and 2020. Synergism, biochemical and molecular assays showed the absence of increased P450 activity in selected population. In addition, no point mutation in nicotinic acetylcholine receptor (nAChR), the target-site of neonicotinoids including acetamiprid, was detected in the selected population. These results suggests that high level of acetamiprid resistance might be developed via the mechanisms other than well-known mechanisms, such as increased P450 activity and target-site mutations. The population selected with acetamiprid showed decreased susceptibility to imidacloprid, sulfaxaflor, beta-cyfluthrin, and tau-fluvanite ranging from 1.54 to 4.76. Nonetheless, more studies are needed to support cross-resistance by Myzus persicae populations having different genetic backgrounds.