On parameter identifiability of multidimensional non-Gaussian ARMA models using cumulant matching

Jitendra Tugnait
{"title":"On parameter identifiability of multidimensional non-Gaussian ARMA models using cumulant matching","authors":"Jitendra Tugnait","doi":"10.1109/ACSSC.1993.342558","DOIUrl":null,"url":null,"abstract":"A general (possibly asymmetric noncausal and/or nonminimum phase) two-dimensional autoregressive moving average random field model driven by an i.i.d. two-dimensional (2D) non-Gaussian sequence is considered. We address the problem of parameter identifiability of the model parameters given the higher-order (third- or fourth-order, for example) cumulants of the 2D signal on a finite set of lags. The signal observations may be noisy. A key result is the parameter identifiability of 2D MA models. Using the MA parameter identifiability results, the parameter identifiability of AR and ARMA models follows immediately via a novel approach.<<ETX>>","PeriodicalId":266447,"journal":{"name":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 27th Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1993.342558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A general (possibly asymmetric noncausal and/or nonminimum phase) two-dimensional autoregressive moving average random field model driven by an i.i.d. two-dimensional (2D) non-Gaussian sequence is considered. We address the problem of parameter identifiability of the model parameters given the higher-order (third- or fourth-order, for example) cumulants of the 2D signal on a finite set of lags. The signal observations may be noisy. A key result is the parameter identifiability of 2D MA models. Using the MA parameter identifiability results, the parameter identifiability of AR and ARMA models follows immediately via a novel approach.<>
基于累积匹配的多维非高斯ARMA模型参数可辨识性研究
考虑了由二维非高斯序列驱动的二维自回归移动平均随机场模型(可能是非对称的非因果和/或非最小相位)。我们解决了给定二维信号在有限滞后集上的高阶(例如三阶或四阶)累积量的模型参数的参数可识别性问题。观测到的信号可能有噪声。一个关键的结果是二维MA模型的参数可识别性。利用MA参数可识别性结果,AR和ARMA模型的参数可识别性通过一种新的方法立即跟进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信