{"title":"OPTIMALITY CONDITIONS FOR SOLVING NONCONVEX SET-VALUED EQUILIBRIUM PROBLEMS","authors":"S. Jafari","doi":"10.29252/maco.1.1.12","DOIUrl":null,"url":null,"abstract":"In this paper, sufficient conditions ensuring the existence of solutions for set-valued equilibrium problems are obtained. The convexity assumption on the whole domain is not necessary and just the closure of a quasi-self-segment-dense subset of the domain is convex. Using a KKM theorem and a notion of Q-selected preserving $R_{-}^{*}$-intersection($R_{-}^{*}$-inclusion) for set-valued mapping, the existence results are proved in real Hausdorff topological vector spaces.","PeriodicalId":360771,"journal":{"name":"Mathematical Analysis and Convex Optimization","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Analysis and Convex Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/maco.1.1.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, sufficient conditions ensuring the existence of solutions for set-valued equilibrium problems are obtained. The convexity assumption on the whole domain is not necessary and just the closure of a quasi-self-segment-dense subset of the domain is convex. Using a KKM theorem and a notion of Q-selected preserving $R_{-}^{*}$-intersection($R_{-}^{*}$-inclusion) for set-valued mapping, the existence results are proved in real Hausdorff topological vector spaces.