Research on Heat Map Modeling of Guiding Big Data Research Hotspots Based on CiteSpace

Guanqi Tao
{"title":"Research on Heat Map Modeling of Guiding Big Data Research Hotspots Based on CiteSpace","authors":"Guanqi Tao","doi":"10.1109/ICEARS53579.2022.9752328","DOIUrl":null,"url":null,"abstract":"In order to better understand the research hotspots and status quo of my country’s education big data, the article uses bibliometrics and scientific knowledge mapping methods, taking the domestic education big data papers from 2013 to 2017 included in the CNKI (China Knowledge Network) journal database. Object, through the visualization software CiteSpace to analyze the journal distribution, time distribution and keywords of the paper, and explore the development status of domestic education big data. This article is based on CiteSpace’s educational big data mining algorithm, which increases the discovery rate of research hotspots by 10.2%; CiteSpace-based heat map modeling method increases the hotspot research to 98.2%.","PeriodicalId":252961,"journal":{"name":"2022 International Conference on Electronics and Renewable Systems (ICEARS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electronics and Renewable Systems (ICEARS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEARS53579.2022.9752328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to better understand the research hotspots and status quo of my country’s education big data, the article uses bibliometrics and scientific knowledge mapping methods, taking the domestic education big data papers from 2013 to 2017 included in the CNKI (China Knowledge Network) journal database. Object, through the visualization software CiteSpace to analyze the journal distribution, time distribution and keywords of the paper, and explore the development status of domestic education big data. This article is based on CiteSpace’s educational big data mining algorithm, which increases the discovery rate of research hotspots by 10.2%; CiteSpace-based heat map modeling method increases the hotspot research to 98.2%.
基于CiteSpace的大数据研究热点引导热图建模研究
为了更好地了解我国教育大数据的研究热点和现状,本文采用文献计量学和科学知识图谱的方法,选取中国知网期刊数据库中收录的2013 - 2017年国内教育大数据论文。对象,通过可视化软件CiteSpace对论文的期刊分布、时间分布和关键词进行分析,探讨国内教育大数据的发展现状。本文基于CiteSpace的教育类大数据挖掘算法,将研究热点发现率提高10.2%;基于citespace的热图建模方法将热点研究提高到98.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信