{"title":"Analysis of Freezing in an Eccentric Annulus","authors":"Yuwen Zhang, A. Faghri","doi":"10.1115/1.2888025","DOIUrl":null,"url":null,"abstract":"\n Freezing in an eccentric annulus is investigated numerically by using a temperature transforming model. Since the effect of the heat conduction along the circular direction on the growth of the freezing layer is very small, an analytical solution by employing integral approximate method is proposed. The freezing rate obtained by the analytical solution agreed very well with that of the numerical solution, although the analytical solution is much simpler than the numerical solution. The effects of the eccentric annulus geometric structure on the freezing process is also investigated.","PeriodicalId":324954,"journal":{"name":"Heat Transfer: Volume 3 — Experimental Studies in Multiphase Flow; Multiphase Flow in Porous Media; Experimental Multiphase Flows and Numerical Simulation of Two-Phase Flows; Fundamental Aspects of Experimental Methods","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 3 — Experimental Studies in Multiphase Flow; Multiphase Flow in Porous Media; Experimental Multiphase Flows and Numerical Simulation of Two-Phase Flows; Fundamental Aspects of Experimental Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.2888025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Freezing in an eccentric annulus is investigated numerically by using a temperature transforming model. Since the effect of the heat conduction along the circular direction on the growth of the freezing layer is very small, an analytical solution by employing integral approximate method is proposed. The freezing rate obtained by the analytical solution agreed very well with that of the numerical solution, although the analytical solution is much simpler than the numerical solution. The effects of the eccentric annulus geometric structure on the freezing process is also investigated.