A Novel Densely Search based Fire-Fly (DSFF) Optimization Algorithm for Image Classification Application

D. Mahalakshmi, S. Appavu alias Balamurugan, M. Chinnadurai, D. Vaishnavi
{"title":"A Novel Densely Search based Fire-Fly (DSFF) Optimization Algorithm for Image Classification Application","authors":"D. Mahalakshmi, S. Appavu alias Balamurugan, M. Chinnadurai, D. Vaishnavi","doi":"10.1109/ICECAA55415.2022.9936409","DOIUrl":null,"url":null,"abstract":"Data processing and analytics are wide spread study with profound applications. Data analytics deals with deriving or applying an algorithm to an application that work with dataset. The proposed work analyses the image data with optimization algorithm by using novel method of Fire-Fly (FF) algorithm, which is named as Densely Search Fire-Fly (DSFF) optimization algorithm. The Neural Network (NN) is applied to classify the optimized data. In this process, the optimized data refers to selective attributes from the raw data of image features. To test the performance of proposed optimization, the Gabor feature extraction method is used to fetch the features from raw image data. The Gabor method retrieves the pattern in various angle of projections. This produces 5 × 8 number of patterns to represent the image feature. From this feature attributes of whole image dataset, the optimization search for the best attributes by the reference of weight value is calculated from the particles of Fire-Fly. According to the best selection of attributes from the objective function, the neurons in a network that can segregate the different classes in the training dataset. The performance of the proposed FF algorithm are compared with the traditional optimization methods in the image classification application.","PeriodicalId":273850,"journal":{"name":"2022 International Conference on Edge Computing and Applications (ICECAA)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Edge Computing and Applications (ICECAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECAA55415.2022.9936409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data processing and analytics are wide spread study with profound applications. Data analytics deals with deriving or applying an algorithm to an application that work with dataset. The proposed work analyses the image data with optimization algorithm by using novel method of Fire-Fly (FF) algorithm, which is named as Densely Search Fire-Fly (DSFF) optimization algorithm. The Neural Network (NN) is applied to classify the optimized data. In this process, the optimized data refers to selective attributes from the raw data of image features. To test the performance of proposed optimization, the Gabor feature extraction method is used to fetch the features from raw image data. The Gabor method retrieves the pattern in various angle of projections. This produces 5 × 8 number of patterns to represent the image feature. From this feature attributes of whole image dataset, the optimization search for the best attributes by the reference of weight value is calculated from the particles of Fire-Fly. According to the best selection of attributes from the objective function, the neurons in a network that can segregate the different classes in the training dataset. The performance of the proposed FF algorithm are compared with the traditional optimization methods in the image classification application.
一种新的基于密集搜索的萤火虫(DSFF)优化算法在图像分类中的应用
数据处理和分析是一门广泛应用的学科。数据分析处理的是导出或将算法应用于处理数据集的应用程序。本文采用一种新的萤火虫(FF)算法,即密集搜索萤火虫(DSFF)优化算法,对图像数据进行优化分析。应用神经网络对优化后的数据进行分类。在此过程中,优化数据是指从图像特征的原始数据中选择属性。为了测试所提出的优化方法的性能,使用Gabor特征提取方法从原始图像数据中提取特征。Gabor方法在不同角度的投影中检索模式。这将产生5 × 8个图案来表示图像特征。从整个图像数据集的特征属性中,从萤火虫的粒子中计算权重值的参考来优化搜索最佳属性。根据目标函数中属性的最佳选择,网络中的神经元可以隔离训练数据集中的不同类别。在图像分类应用中,将所提出的FF算法与传统的优化方法进行了性能比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信