Web Auto Configuration for N-Tier in VM based Dynamic Environment by Reinforcement Learning Approach: A Study

K. Prajapati, Dinesh J Prajapati
{"title":"Web Auto Configuration for N-Tier in VM based Dynamic Environment by Reinforcement Learning Approach: A Study","authors":"K. Prajapati, Dinesh J Prajapati","doi":"10.5121/cseij.2022.12104","DOIUrl":null,"url":null,"abstract":"In Web system, configuration is the crucial part to achieve performance with service availability. Now in days, because of dynamics web traffic, virtualization is the key factor. How to handle required resources is a challenging task in virtual environment. Apply optimize configurations for different servers as per available resources is a tedious task to achieve high throughput with low latency. In this paper we have described the studied methodology of machine learning, which will guide how optimize all the parameters with the best results in terms of web usability.","PeriodicalId":361871,"journal":{"name":"Computer Science & Engineering: An International Journal","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science & Engineering: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/cseij.2022.12104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In Web system, configuration is the crucial part to achieve performance with service availability. Now in days, because of dynamics web traffic, virtualization is the key factor. How to handle required resources is a challenging task in virtual environment. Apply optimize configurations for different servers as per available resources is a tedious task to achieve high throughput with low latency. In this paper we have described the studied methodology of machine learning, which will guide how optimize all the parameters with the best results in terms of web usability.
基于强化学习的虚拟机动态环境下n层Web自动配置研究
在Web系统中,配置是实现性能和服务可用性的关键环节。现在,由于动态的网络流量,虚拟化是关键因素。在虚拟环境中,如何处理所需的资源是一个具有挑战性的任务。根据可用资源为不同的服务器应用优化配置是一项繁琐的任务,以实现低延迟的高吞吐量。在本文中,我们描述了机器学习的研究方法,这将指导如何在web可用性方面优化所有参数并获得最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信