Low-Power Anomaly Detection and Classification System based on a Partially Binarized Autoencoder for In-Sensor Computing

P. Vitolo, G. Licciardo, L. D. Benedetto, R. Liguori, A. Rubino, D. Pau
{"title":"Low-Power Anomaly Detection and Classification System based on a Partially Binarized Autoencoder for In-Sensor Computing","authors":"P. Vitolo, G. Licciardo, L. D. Benedetto, R. Liguori, A. Rubino, D. Pau","doi":"10.1109/icecs53924.2021.9665479","DOIUrl":null,"url":null,"abstract":"This work proposes a new ultra low-power fault detection system, suitable for extreme edge or in-sensor computing. The system is composed of a hybrid HW/SW architecture: a hardware auto-encoder (AE) is always on at the edge for anomaly detection (AD), and of a software convolutional neural network (CNN) is activated only if the anomaly is detected for its classification. To achieve low area and energy requirements, the AE exploits an original partially binarization scheme, while the CNN shares the feature extraction module with the AE. The implementation of the AE on a Xilinx Artix-7 FPGA demonstrates that it is capable to manage in real-time sensors with a maximum Output Data Rate (ODR) of 365 kHz with a power dissipation of 122 mW. Best synthesis results with TSMC CMOS 65 nm standard cells show a power consumption of $138\\ \\mu\\mathrm{W}/\\text{MHz}$ and an area occupation of 0.49 mm2 when real-time operations are set, enabling the possibility to integrate the complete HW accelerator in the auxiliary circuitry that typically equips inertial MEMS and on the same die. Comparisons with the current literature show that the proposed system obtains state-of-the-art performances in terms of accuracy and compactness.","PeriodicalId":448558,"journal":{"name":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icecs53924.2021.9665479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This work proposes a new ultra low-power fault detection system, suitable for extreme edge or in-sensor computing. The system is composed of a hybrid HW/SW architecture: a hardware auto-encoder (AE) is always on at the edge for anomaly detection (AD), and of a software convolutional neural network (CNN) is activated only if the anomaly is detected for its classification. To achieve low area and energy requirements, the AE exploits an original partially binarization scheme, while the CNN shares the feature extraction module with the AE. The implementation of the AE on a Xilinx Artix-7 FPGA demonstrates that it is capable to manage in real-time sensors with a maximum Output Data Rate (ODR) of 365 kHz with a power dissipation of 122 mW. Best synthesis results with TSMC CMOS 65 nm standard cells show a power consumption of $138\ \mu\mathrm{W}/\text{MHz}$ and an area occupation of 0.49 mm2 when real-time operations are set, enabling the possibility to integrate the complete HW accelerator in the auxiliary circuitry that typically equips inertial MEMS and on the same die. Comparisons with the current literature show that the proposed system obtains state-of-the-art performances in terms of accuracy and compactness.
基于部分二值化自编码器的传感器内计算低功耗异常检测与分类系统
本文提出了一种新的超低功耗故障检测系统,适用于极端边缘或传感器内计算。该系统由硬件/软件混合架构组成:硬件自编码器(AE)始终在边缘进行异常检测(AD),而软件卷积神经网络(CNN)仅在检测到异常时才被激活进行分类。为了实现对面积和能量的低要求,声发射利用了原始的部分二值化方案,而CNN与声发射共享特征提取模块。在Xilinx Artix-7 FPGA上的AE实现表明,它能够管理最大输出数据速率(ODR)为365 kHz,功耗为122 mW的实时传感器。采用台积电CMOS 65nm标准单元的最佳合成结果显示,在设置实时操作时,功耗为$138\ \mu\ mathm {W}/\text{MHz}$,占地面积为0.49 mm2,从而可以将完整的HW加速器集成到通常配备惯性MEMS的辅助电路中,并集成在同一芯片上。与现有文献的比较表明,所提出的系统在准确性和紧凑性方面获得了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信