Dynamic Partial Reconfiguration in Space Applications

B. Osterloh, H. Michalik, S. Habinc, B. Fiethe
{"title":"Dynamic Partial Reconfiguration in Space Applications","authors":"B. Osterloh, H. Michalik, S. Habinc, B. Fiethe","doi":"10.1109/AHS.2009.13","DOIUrl":null,"url":null,"abstract":"The demand for high-performance on-board processing in space applications drastically increased because of the discrepancy between extreme high data volume and low downlink channel capacity. Furthermore in-flight reconfigurability and dynamic partial reconfiguration enhances space applications with re-programmable hardware and at run-time adaptive functionality. Therefore it is a maintenance and performance improvement. Furthermore it enables mission specific adaptability on demand on board of S/C. Additionally dynamic partial reconfiguration is an improvement in terms of resource utilization and costs. Current space qualified reprogrammable FPGA technologies provide large logic density and have already successfully demonstrated their suitability for space applications. To achieve such an advanced dynamic partial reconfigurable system an appropriate FPGA architecture has to be chosen and the requirements to meet a high reliable system have to be analyzed. In this paper the current available reprogrammable FPGA technologies will be compared and their suitability for a dynamic partial reconfiguration will be outlined. The requirements to achieve a high reliable fault tolerant system will be presented and a framework is proposed.","PeriodicalId":318989,"journal":{"name":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 NASA/ESA Conference on Adaptive Hardware and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AHS.2009.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

The demand for high-performance on-board processing in space applications drastically increased because of the discrepancy between extreme high data volume and low downlink channel capacity. Furthermore in-flight reconfigurability and dynamic partial reconfiguration enhances space applications with re-programmable hardware and at run-time adaptive functionality. Therefore it is a maintenance and performance improvement. Furthermore it enables mission specific adaptability on demand on board of S/C. Additionally dynamic partial reconfiguration is an improvement in terms of resource utilization and costs. Current space qualified reprogrammable FPGA technologies provide large logic density and have already successfully demonstrated their suitability for space applications. To achieve such an advanced dynamic partial reconfigurable system an appropriate FPGA architecture has to be chosen and the requirements to meet a high reliable system have to be analyzed. In this paper the current available reprogrammable FPGA technologies will be compared and their suitability for a dynamic partial reconfiguration will be outlined. The requirements to achieve a high reliable fault tolerant system will be presented and a framework is proposed.
空间应用中的动态局部重构
由于极高的数据量和较低的下行信道容量之间的差异,空间应用中对高性能机载处理的需求急剧增加。此外,飞行中的可重构性和动态部分重构通过可重新编程的硬件和运行时的自适应功能增强了空间应用。因此,这是一种维护和性能改进。此外,它还可以根据机载S/C的需求实现任务特定的适应性。此外,动态部分重构在资源利用率和成本方面是一种改进。目前空间合格的可编程FPGA技术提供了大的逻辑密度,并且已经成功地证明了它们对空间应用的适用性。为了实现这种先进的动态部分可重构系统,必须选择合适的FPGA架构,并分析满足高可靠性系统的要求。本文将比较当前可用的可编程FPGA技术,并概述它们对动态部分重构的适用性。提出了实现高可靠容错系统的要求,并提出了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信