{"title":"Modular nonblocking verification using conflict equivalence","authors":"H. Flordal, R. Malik","doi":"10.1109/WODES.2006.1678415","DOIUrl":null,"url":null,"abstract":"This paper proposes a modular approach to verifying whether a large discrete event system is nonconflicting. The new approach avoids computing the synchronous product of a large set of finite-state machines. Instead, the synchronous product is computed gradually, and intermediate results are simplified using conflict-preserving abstractions based on process-algebraic results about fair testing. Heuristics are used to choose between different possible abstractions. Experimental results show that the method is applicable to finite-state machine models of industrial scale and brings considerable improvements in performance over other methods","PeriodicalId":285315,"journal":{"name":"2006 8th International Workshop on Discrete Event Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 8th International Workshop on Discrete Event Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WODES.2006.1678415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53
Abstract
This paper proposes a modular approach to verifying whether a large discrete event system is nonconflicting. The new approach avoids computing the synchronous product of a large set of finite-state machines. Instead, the synchronous product is computed gradually, and intermediate results are simplified using conflict-preserving abstractions based on process-algebraic results about fair testing. Heuristics are used to choose between different possible abstractions. Experimental results show that the method is applicable to finite-state machine models of industrial scale and brings considerable improvements in performance over other methods