Coverage Learned Targeted Validation for incremental HW changes

Monica Farkash, Bryan G. Hickerson, Michael L. Behm
{"title":"Coverage Learned Targeted Validation for incremental HW changes","authors":"Monica Farkash, Bryan G. Hickerson, Michael L. Behm","doi":"10.1145/2593069.2593114","DOIUrl":null,"url":null,"abstract":"This paper addresses the challenges of minimizing the time and resources required to validate the changes between two Hardware (HW) model iterations of the same design. It introduces CLTV (Coverage Learned Targeted Validation), an automatic framework which learns during the verification process of the HW and uses the learned information to target the areas of the design that are affected by the incremental HW model iterations. Our paper defines new concepts, presents our implementation of the supporting algorithms, and shows actual results on an IBM POWER8 processor with outstanding results.","PeriodicalId":433816,"journal":{"name":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2593069.2593114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper addresses the challenges of minimizing the time and resources required to validate the changes between two Hardware (HW) model iterations of the same design. It introduces CLTV (Coverage Learned Targeted Validation), an automatic framework which learns during the verification process of the HW and uses the learned information to target the areas of the design that are affected by the incremental HW model iterations. Our paper defines new concepts, presents our implementation of the supporting algorithms, and shows actual results on an IBM POWER8 processor with outstanding results.
覆盖学习目标验证增量HW变化
本文解决了最小化验证相同设计的两个硬件(HW)模型迭代之间的更改所需的时间和资源的挑战。它引入了CLTV(覆盖学习目标验证),这是一个自动框架,它在HW的验证过程中学习,并使用学习到的信息来定位受增量HW模型迭代影响的设计区域。本文定义了新的概念,介绍了支持算法的实现,并展示了在IBM POWER8处理器上的实际结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信