Vibrational Resonance in the Duffing Oscillator with Distributed Time-Delayed Feedback

C. Jeevarathinam, S. Rajasekar, M. Sanjuán
{"title":"Vibrational Resonance in the Duffing Oscillator with Distributed Time-Delayed Feedback","authors":"C. Jeevarathinam, S. Rajasekar, M. Sanjuán","doi":"10.5890/jand.2015.11.006","DOIUrl":null,"url":null,"abstract":"We analyze the vibrational resonance in the Duffing oscillator system in the presence of (i) a gamma distributed time-delayed feedback and (ii) integrative time-delayed (uniformly distributed time delays over a finite interval) feedback. Particularly, applying a theoretical procedure we obtain an expression for the response amplitude $Q$ at the low-frequency of the driving biharmonic force. For both double-well potential and single-well potential cases we are able to identify the regions in parameter space where either (i) two resonances, (ii) a single resonance or (iii) no resonance occur. Theoretically predicted values of $Q$ and the values of a control parameter at which resonance occurs are in good agreement with our numerical simulation. The analysis shows a strong influence of both types of time-delayed feedback on vibrational resonance.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5890/jand.2015.11.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We analyze the vibrational resonance in the Duffing oscillator system in the presence of (i) a gamma distributed time-delayed feedback and (ii) integrative time-delayed (uniformly distributed time delays over a finite interval) feedback. Particularly, applying a theoretical procedure we obtain an expression for the response amplitude $Q$ at the low-frequency of the driving biharmonic force. For both double-well potential and single-well potential cases we are able to identify the regions in parameter space where either (i) two resonances, (ii) a single resonance or (iii) no resonance occur. Theoretically predicted values of $Q$ and the values of a control parameter at which resonance occurs are in good agreement with our numerical simulation. The analysis shows a strong influence of both types of time-delayed feedback on vibrational resonance.
分布时滞反馈Duffing振荡器的振动共振
我们分析了Duffing振子系统在(i)伽玛分布时滞反馈和(ii)积分时滞(有限区间内均匀分布的时滞)反馈下的振动共振。特别地,我们应用理论程序得到了驱动双谐力在低频处的响应幅值Q$的表达式。对于双阱势和单井势,我们都能够在参数空间中确定(i)两个共振,(ii)一个共振或(iii)没有共振的区域。理论预测的$Q$和发生共振的控制参数值与我们的数值模拟很好地吻合。分析表明,两种时滞反馈对振动共振的影响都很大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信